Skip to main content
Log in

Improvement of Highly Thermostable Xylanases Production by Talaromyces thermophilus for the Agro-industrials Residue Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A newly isolated thermophilic fungal strain from Tunisian soil samples was identified as Talaromyces thermophilus and was selected for its ability to produce extracellular hemicellulases when grown on various lignocellulosic substrates. Following the optimization of carbon source, nitrogen source, and initial pH of the growth medium in submerged liquid cultures, yields as high as 10.00 ± 0.15 and 0.21 ± 0.02 U/ml were obtained for xylanase and β-xylosidase, respectively. In fact, wheat bran was found to be a good inducer of hemicellulase enzymes, mainly β-xylosidase. The optimal temperature and pH of the xylanase activity were 75°C and 8.0, respectively. This enzyme exhibited a remarkable stability and retained 100% of its original activity at 50°C for 7 days at pH 7.0–8.0. The half-lives of the enzyme were 4 h at 80°C, 2 h at 90°C, and 1 h at 100°C. T. thermophilus could therefore be considered as a satisfactory and promising producer of thermostable xylanases. Crude enzyme of T. thermophilus rich in xylanase and β-xylosidase was established for the hydrolysis of lignocellulosic materials as wheat bran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coughlan, M. P., & Hazelwood, G. P. (1993). Biotechnology and Applied Biochemistry, 17, 259–289.

    CAS  Google Scholar 

  2. Jeffries, T. W. (1994). In C. Ratledge (Ed.), Biochemistry of microbial degradation, (pp. 233–277). Dordrecht: Kluwer.

  3. Thomson, J. A. (1993). FEMS Microbiology Reviews, 104, 65–82.

    Article  CAS  Google Scholar 

  4. Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Zupancic, S. (1996). Bioressource Technology, 58, 137–161.

    Article  CAS  Google Scholar 

  5. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnolology, 67, 577–591.

    Article  CAS  Google Scholar 

  6. Techapun, C., Poosaran, N., Watanabe, M., & Sasaki, K. (2003). Process Biochemistry, 38, 1327–1340.

    Article  CAS  Google Scholar 

  7. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Trends in Biotechnology, 24(12), 549–556.

    Article  Google Scholar 

  8. Assamoi Allah, A., Destain, J., & Philippe, T. (2010). Applied Biochemistry and Biotechnology, 160, 50–62.

    Google Scholar 

  9. Bensod, S., Dutta-Choudhary, M., Srinivasan, C., & Rele, M. (1993). Biotechnology Letters, 15, 965–970.

    Article  Google Scholar 

  10. Gupta, S., Kuhad, R., Bhushan, B., & Hoondal, G. (2001). World Journal Microbiology and Biotechnolology, 54, 92–97.

    Google Scholar 

  11. Ellaiah, P., Adinarayana, K., Bhavan, Y., Padmaja, P., & Srinivasulu, B. (2000). Process Biochemistry, 38, 615–620.

    Article  Google Scholar 

  12. Galbe, M., Lidén, G., & Zacchi, G. (2005). Journal of Scientific and Industrial Research, 64, 905–919.

    CAS  Google Scholar 

  13. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Current Opinion in Biotechnology, 13, 345–351.

    Article  CAS  Google Scholar 

  14. Ines, M., Ines, B., Najla, F. M., & Belghith, H. (2009). Applied Biochemistry and Biotechnology, 158, 200–2010. doi:10.1007/s12010-008-8317-x.

    Article  Google Scholar 

  15. Mohamed, G., Ali, G., & Hafedh, B. (2008). Applied Biochemistry and Biotechnology, 150, 267–279.

    Article  Google Scholar 

  16. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–413.

    CAS  Google Scholar 

  17. Reese, E. T., & Maguire, A. (1969). Applied Microbiology, 17, 242–245.

    CAS  Google Scholar 

  18. Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology and Bioengineering Symposium, 6, 21–34.

    CAS  Google Scholar 

  19. Miller, G. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Nath, R. L., & Rydon, H. (1954). In W.A. Wood, & S. T. Kellogg (Eds.), Methods in enzymology (pp. 679–684). New York: Academic.

  21. Bradford, M. (1976). Analalytical Chemistry, 72, 248–254.

    CAS  Google Scholar 

  22. Dien, B. S., Li, X. L., Iten, L. B., Jordan, D. B., Nichols, N. N., O’Bryan, P. J., et al. (2006). Enzyme and Microbial Technology, 39, 1137–1144.

    Article  CAS  Google Scholar 

  23. Beaugrand, J., Cronier, D., Debeire, P., & Chabbert, B. (2004). Journal of Cereal Science, 40, 223–230.

    Article  CAS  Google Scholar 

  24. Chandra, R., & Chandra, T. (1995). Biotechnology Letters, 17, 309–314.

    Article  Google Scholar 

  25. Royer, J., & Nakas, J. (1989). Enzyme and Microbial Technology, 11, 405–410.

    Article  CAS  Google Scholar 

  26. Tilburn, J. (1995). European Molecular Biology Organization Journal, 14, 779–790.

    CAS  Google Scholar 

  27. Smith, D., & Wood, T. (1991). Biotechnology and Bioengineering, 38, 883–890.

    Article  CAS  Google Scholar 

  28. Yin, L., Zhiqiang, L., Fengjie, C., Yingying, X., & Hui, Z. (2007). World Journal of Microbiology and Biotechnology, 23, 837–843.

    Article  Google Scholar 

  29. Shah, A. R., & Madamwar, D. (2004). Process Biochemistry, 40, 1763–1771.

    Article  Google Scholar 

  30. Simmons, E. (1977). In: Second International Mycological Congress (pp. 618–18), Tampa, Florida.

  31. Dubeau, H., Chahal, D., & Ishaque, H. (1987). Biotechnology Letters, 4, 275–80.

    Article  Google Scholar 

  32. Georis, J., De Lemos Esteves, F., Lamotte-Brasseur, J., Bougnet, V., Devreese, B., Giannotta, F., et al. (2000). Protein Science, 9, 466–475.

    Article  CAS  Google Scholar 

  33. Jain, A., Garg, S. K., & Johri, B. N. (1998). Bioresource Technology, 64, 225–228.

    Article  CAS  Google Scholar 

  34. George, S. P., Ahmad, A., & Rao, M. B. (2001). Bioresource Technology, 77, 171–175.

    Article  CAS  Google Scholar 

  35. Kohli, U., Nigam, P., & Singh, D. (2001). Enzyme and Microbial Technology, 28, 606–610.

    Article  CAS  Google Scholar 

  36. Gnansounou, E., Dauriat, A., & Wyman, C. E. (2005). Bioresource Technology, 96, 985–1002.

    Article  CAS  Google Scholar 

  37. Öhgren, K., Vehmaanpera, J., Siika-Aho, M., Galbe, M., Viikari, L., & Zacchi, G. (2007). Enzyme and Microbial Technology, 40, 607–613.

    Article  Google Scholar 

  38. Aachary, A. A., & Prapulla, S. G. (2008). Journal of Agriculture and Food Chemistry, 56(11), 981–988.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere gratitude to Professor Ali Gargouri for his interest in this work and for his critical appraisal of the paper. Special thanks are also due to Mr. Anouar Smaoui from the English Department at the Sfax Faculty of Science for his careful proofreading and constructive review of the manuscript of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafedh Belghith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romdhane, I.B.B., Achouri, I.M. & Belghith, H. Improvement of Highly Thermostable Xylanases Production by Talaromyces thermophilus for the Agro-industrials Residue Hydrolysis. Appl Biochem Biotechnol 162, 1635–1646 (2010). https://doi.org/10.1007/s12010-010-8945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8945-9

Keywords

Navigation