Skip to main content
Log in

Isolation and Characterization of a Novel Thermophilic-Organic Solvent Stable Lipase From Acinetobacter baylyi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The benzene tolerant Acinetobacter baylyi isolated from marine sludge in Angsila, Thailand could constitutively secrete lipolytic enzymes. The enzyme was successfully purified 21.89-fold to homogeneity by ammonium sulfate precipitation and gel-permeable column chromatography with a relative molecular mass as 30 kDa. The enzyme expressed maximum activity at 60°C and pH 8.0 with p-nitrophenyl palmitate as a substrate and found to be stable in pH and temperature ranging from 6.0-9.0 to 60-80°C, respectively. A study on solvent stability revealed that the enzyme was highly resisted to many organic solvents especially benzene and isoamyl alcohol, but 40% inhibited by decane, hexane, acetonitrile, and short-chain alcohols. Lipase activity was completely inhibited in the presence of Fe2+, Mn2+, EDTA, SDS, and Triton X-100 while it was suffered detrimentally by Tween 80. The activity was enhanced by phenylmethylsulfonyl fluoride (PMSF), Na+, and Mg2+ and no significant effect was found in the presence of Ca2+ and Li+. Half of an activity was retained by Ba2+, Ag+, Hg+, Ni2+, Zn2+, and DTT. The enzyme could hydrolyze a wide range of p-nitrophenyl esters, but preferentially medium length acyl chains (C8-C12). Among natural oils and fats, the enzyme 11-folds favorably catalyzed the hydrolysis of rice bran oil, corn oil, sesame oil, and coconut oil in comparison to palm oil. Moreover, the transesterification activity of palm oil to fatty acid methyl esters (FAMEs) revealed 31.64 ± 1.58% after 48 h. The characteristics of novel A. baylyi lipase, as high temperature stability, organic solvent tolerance, and transesterification capacity from palm oil to FAMEs, indicate that it could be a vigorous biocatalyzer in the prospective fields as bioenergy industry or even in organic synthesis and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang, Y., Lu, Z., Lv, F., Bie, X., Liu, S., Ding, Z., et al. (2006). Current Microbiology, 53, 510–515.

    Article  CAS  Google Scholar 

  2. Yan, G., Yang, G., Xu, L., & Yan, Y. (2007). Journal of Molecular Catalysis. B, Enzymatic, 49, 28–35.

    Article  CAS  Google Scholar 

  3. Antczak, M. S., Kubiak, A., Antczak, T., & Bielecki, S. (2009). Renew Energy, 34, 1185–1194.

    Article  CAS  Google Scholar 

  4. Ogino, H., Miyamoto, K., & Ishikawa, H. (1994). Applied and Environmental Microbiology, 60, 3884–3885.

    CAS  Google Scholar 

  5. Sellek, G. A., & Chaudhuri, J. B. (1999). Enzyme and Microbial Technology, 25, 471–482.

    Article  CAS  Google Scholar 

  6. Khmelnitsky, Y. L., Levashov, A. V., Klyachko, N. L., & Martinek, K. (1988). Enzyme and Microbial Technology, 10, 710–724.

    Article  Google Scholar 

  7. Klibanov, A. M. (2001). Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  8. Ogino, H., & Ishikawa, H. (2001). Journal of Bioscience and Bioengineering, 91, 109–116.

    Article  CAS  Google Scholar 

  9. Gupta, A., & Khare, S. K. (2009). Critical Reviews in Biotechnology, 29, 44–54.

    Article  CAS  Google Scholar 

  10. Sardessai, Y., & Bhosle, S. (2002). Research in Microbiology, 153, 263–268.

    Article  CAS  Google Scholar 

  11. de Bont, J. A. M. (1998). TIBTECH, 16, 493–499.

    Google Scholar 

  12. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  13. Kouker, G., & Jaeger, K. E. (1987). Applied and Environmental Microbiology, 53, 211–213.

    CAS  Google Scholar 

  14. Pencreac’h, G., & Baratti, J. C. (1996). Enzyme and Microbial Technology, 18, 417–422.

    Article  Google Scholar 

  15. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  16. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  17. Precigou, S., Wieserl, M., Pommares, P., Goulasl, P., & Duran, R. (2004). Biotechnological Letters, 26, 1379–1384.

    Article  CAS  Google Scholar 

  18. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Journal of Molecular Catalysis. B, Enzymatic, 17, 133–142.

    Article  CAS  Google Scholar 

  21. Winayanuwattikun, P., Kaewpiboon, C., Piriyakananon, K., Tantong, S., Thakernkarnkit, W., Chulalaksananukul, W., et al. (2008). Biomass and Bioenergy, 32, 1279–1286.

    Article  CAS  Google Scholar 

  22. Young, D. M., Parke, D., & Ornston, L. N. (2005). Annual Review of Microbiology, 59, 519–551.

    Article  CAS  Google Scholar 

  23. Abdel-EI-Haleem, D. (2003). African Journal of Biotechnology, 2, 71–74.

    Google Scholar 

  24. Gupta, R., Gupta, N., & Rathi, P. (2004). Applied Microbiology and Biotechnology, 64, 763–781.

    Article  CAS  Google Scholar 

  25. Barbaro, S. E., Trevors, J. T., & Inniss, W. E. (2001). Canadian Journal of Microbiology, 47, 194–205.

    Article  CAS  Google Scholar 

  26. Pratuangdeikul, J., & Dharmsthiti, S. (2000). Microbiological Research, 155, 95–100.

    Google Scholar 

  27. Gilbert, E. J., Drozd, J. W., & Jones, C. W. (1991). Journal of General Microbiology, 137, 2215–2221.

    CAS  Google Scholar 

  28. Mahler, G. F., Kok, R. G., Cordenons, A., Hellingwerf, K. J., & Nudel, B. C. (2000). Journal of Industrial Microbiology & Biotechnology, 24, 25–30.

    Article  CAS  Google Scholar 

  29. Kok, R. G., Nudel, C. B., Gonzalez, R. H., Nugteren-Roodzant, I. M., & Hellingwerf, K. J. (1996). Journal of Bacteriology, 178, 6025–6035.

    CAS  Google Scholar 

  30. Fischer, B. E., & Kleber, H.-P. (1987). Journal of Basic Microbiology, 27, 427–432.

    Article  CAS  Google Scholar 

  31. In-Hye, P., Kim, S.-H., Lee, Y.-S., Lee, S.-C., Zhou, Y., Kim, C.-M., et al. (2009). Journal of Microbiology and Biotechnology, 19, 128–135.

    Article  Google Scholar 

  32. Liu, I.-L., & Tsai, S. W. (2003). Applied Biochemistry and Biotechnology, 104, 129–140.

    Article  CAS  Google Scholar 

  33. Snellman, E. A., Sullivan, E., & Colwell, R. R. (2002). European Journal of Biochemistry, 269, 5771–5779.

    Article  CAS  Google Scholar 

  34. Saisubramanian, N., Sivasubramanian, S., Nandakumar, N., Indirakumar, B., Chaudhary, N., & Puvanakrishnan, R. (2008). Applied Biochemistry and Biotechnology, 150, 139–156.

    Article  CAS  Google Scholar 

  35. Kwang-Woo, L., Hyun-Ae, B., Gab-Sang, S., & Yong-Hyun, L. (2006). Enzyme and Microbial Technology, 38, 443–448.

    Article  CAS  Google Scholar 

  36. Snellman, E. A., & Colwell, R. R. (2004). Journal of Industrial Microbiology & Biotechnology, 31, 391–400.

    Article  CAS  Google Scholar 

  37. Bornscheuer, U. T., Bessler, C., Srinivas, R., & Krishna, S. H. (2002). Trends in Biotechnology, 20, 433–437.

    Article  CAS  Google Scholar 

  38. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  39. Ogino, H., Yasui, K., Shiotani, T., Ishihara, T., & Ishikawa, H. (1995). Applied and Environmental Microbiology, 61, 4258–4262.

    CAS  Google Scholar 

  40. Tang, X. Y., Pan, Y., Li, S., & He, B. F. (2008). Bioresource Technology, 99, 7388–7392.

    Article  CAS  Google Scholar 

  41. Sugihara, A., Tani, T., & Tominaga, Y. (1991). Journal of Biochemistry, 109, 211–216.

    CAS  Google Scholar 

  42. Dharmsthiti, S., Pratuangdejkul, J., Theeragool, G., & Luchai, S. (1998). Journal of General and Applied Microbiology, 44, 139–145.

    Article  CAS  Google Scholar 

  43. Hun, C. J., Zaliha, A., Rahman, R. N., Salleh, A. B., & Basri, M. (2003). Biochemical Engineering Journal, 15, 147–151.

    Article  CAS  Google Scholar 

  44. Shimada, Y., Watanabe, Y., & Samukawa, T. (1999). Journal of the American Oil Chemists' Society, 76, 789–793.

    Article  CAS  Google Scholar 

  45. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Bioresource Technology, 98, 648–653.

    Article  CAS  Google Scholar 

  46. Furth, A. J. (1980). Analytical Biochemistry, 109, 207–215.

    Article  CAS  Google Scholar 

  47. Brockerhoff, H., & Jensen, R. G. (1974). Lipolytic enzymes. New York: Academic Press, Inc.

    Google Scholar 

  48. Towatana, N. H., Painupong, A., & Suntinanalert, P. (1999). Journal of Bioscience and Bioengineering, 87, 581–587.

    Article  Google Scholar 

  49. Strongin, A. Y., Izotova, L. S., Abramov, Z. T., Gorodetsky, D. I., Ermakova, L. M., Baratova, L. A., et al. (1978). Journal of Bacteriology, 133, 1401–1411.

    CAS  Google Scholar 

  50. Huheey, J. E. (1972). Chemistry: principles of structure and reactivity. New York: Harper and Row.

    Google Scholar 

  51. Chen, S., Cheng, C., & Chen, T. (1998). Journal of Fermentation and Bioengineering, 86, 308–312.

    Article  CAS  Google Scholar 

  52. Hong, M., & Chang, M. (1988). Biotechnological Letters, 20, 1027–1029.

    Article  Google Scholar 

  53. Erhan, S. Z. (2005). Industrial uses of vegetable oils. USA: AOCS Press.

    Book  Google Scholar 

Download references

Acknowledgments

The accomplishment of this work was possible due to the funding support from Center of Excellence on Environmental Health, Toxicology, and Management of Chemicals (ETM-PERDO) to JC. We are grateful for a financial support to SU from Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education. We would like to thank Ms. S. Sinlapachai for her technical assistance in and Dr. N. Kurukitkoson for the proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jittima Charoenpanich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uttatree, S., Winayanuwattikun, P. & Charoenpanich, J. Isolation and Characterization of a Novel Thermophilic-Organic Solvent Stable Lipase From Acinetobacter baylyi . Appl Biochem Biotechnol 162, 1362–1376 (2010). https://doi.org/10.1007/s12010-010-8928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8928-x

Keywords

Navigation