Skip to main content

Advertisement

Log in

The Effect of pH on Continuous Biohydrogen Production from Swine Wastewater Supplemented with Glucose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of pH on hydrogen production from liquid swine manure supplemented with glucose by a mixed culture of fermentative bacteria in an anaerobic sequencing batch reactor was evaluated in this study. At 37 ± 1 °C, five pH values ranging from 4.7 to 5.9 at an increment of 0.3 were tested at a hydraulic retention time (HRT) of 16 h. The results showed that at this HRT, the optimal pH for hydrogen production was 5.0, under which the biogas comprised 33.57 ± 5.65% of hydrogen with a production rate of 8.88 ± 2.94 L-H2/day and a yield of 1.48 ± 0.49 L-H2/L liquid swine manure. The highest biomass concentration, highest butyric acid to acetic acid ratio, lowest propionic acid concentration, and the best stability were all found at pH 5.0, while the highest CH4 productivity was found at pH 5.9. For efficient hydrogen production, oxygen content should be controlled under 2%, beyond which an inverse linear relationship (R 2 = 0.986) was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  2. Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38, 569–582.

    Article  CAS  Google Scholar 

  3. Das, D., & Verziroglu, T. N. (2001). Hydrogen production by biological processes: A survey of literature. International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  4. Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27, 1185–1193.

    Article  CAS  Google Scholar 

  5. Nandi, R., & Sengupta, S. (1998). Microbial production of hydrogen: An overview. Critical Reviews in Microbiology, 24, 61–84.

    Article  CAS  Google Scholar 

  6. Cai, M. L., & Liu, J. X. (2005). Factors effecting hydrogen production from anaerobic fermentation of excess sewage sludge. Environmental Science, 26, 98–101.

    CAS  Google Scholar 

  7. Kim, S. H., Han, S. K., & Shin, H. S. (2004). Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy, 29, 1607–1616.

    Article  CAS  Google Scholar 

  8. Lay, J. J., Lee, Y. J., & Noike, T. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 33(11), 2579–2586.

    Article  CAS  Google Scholar 

  9. Ueno, Y., Otauka, S., & Morimoto, M. (1996). Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering, 82, 194–197.

    Article  CAS  Google Scholar 

  10. Kim, M. S. (2002). An integrated system for the biological hydrogen production from organic wastes and waste-waters. International Symposium on Hydrogen and Methane Fermentation of Organic Waste. Tokyo, 11–18.

  11. Logan, B., Oh, S. E., Kim, I. K., & Van Ginkel, S. W. (2002). Biological hydrogen production measured in batch anaerobic respirometers. Environmental Science and Technology, 36(11), 2530–2535.

    Article  CAS  Google Scholar 

  12. Noike, T., Takabatake, H., Mizuno, O., & Ohba, M. (2002). Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy, 27(11/12), 1367–1371.

    Article  CAS  Google Scholar 

  13. Yu, H. Q., Zh, Z. H., Hu, W. R., & Zhang, H. S. (2002). Hydrogen production from ricewinery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. International Journal of Hydrogen Energy, 27(11/12), 1359–1365.

    Article  CAS  Google Scholar 

  14. Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V., Liao, C. S., et al. (2003). Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Research, 37(11), 2789–2793.

    Article  CAS  Google Scholar 

  15. Hussy, I., Hawkes, F. R., Dinsdale, R., & Hawkes, D. L. (2005). Continuous fermentative hydrogen production from sucrose and sugarbeet. International Journal of Hydrogen Energy, 30(5), 471–483.

    Article  CAS  Google Scholar 

  16. Van Ginkel, S. W., Oh, S. E., & Logan, B. E. (2005). Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 30(15), 1535–1542.

    Article  CAS  Google Scholar 

  17. Li, C., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solid waste by mixed cultures. Critical Reviews in Environmental Science and Technology, 37, 1–39.

    Article  CAS  Google Scholar 

  18. Mu, Y., & Yu, H. Q. (2004). Biohydrogen production from sucrose-rich wastewater by anaerobic granules, Proc. 2nd International Workshop on Innovative Anaerobic Technology. Sendai. Japan, 22–31.

  19. Dabrock, B., Bahl, H., & Gottschalk, G. (1992). Parameters affecting solvent production by Clostridium pasteurium. Applied and Environmental Microbiology, 58, 1233–1239.

    CAS  Google Scholar 

  20. Lay, J. J. (2000). Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering, 68(3), 269–278.

    Article  CAS  Google Scholar 

  21. Chen, C. C., Lin, C. Y., & Lin, M. C. (2002). Acid–base enrichment enhances anaerobic hydrogen production process. Applied Microbiology and Biotechnology, 58(2), 224–228.

    Article  Google Scholar 

  22. APHA, AWWA, & WEF. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  23. Leslie, G., Daigger, T. G., & Lim, C. H. (1999). Biological wastewater treatment (2nd ed., p. 632). New York: Marcel Dekker.

    Google Scholar 

  24. Madigan, M. T., Martinko, J. M., & Parker, J. (2002). Brock biology of microorganisms (10th ed., pp. 957–958). NJ: Pearson Education.

    Google Scholar 

  25. Esteso, M. A., Estrella, C. N., & Podesta, J. J. (1996). Evaluation of the absorption on mild steel of hydrogen evolved in glucose fermentation by pure cultures of Clostridium acetobutylicum and Enterobacter. Sensors and Actuators. B, Chemical, 32(1), 27–31.

    Article  Google Scholar 

  26. Kataoka, N., Miya, A., & Kiriyama, K. (1997). Studies on hydrogen production by continuous cultures system of hydrogen producing anaerobic bacteria. Water Science and Technology, 36(6–7), 41–47.

    Article  CAS  Google Scholar 

  27. Karube, I., Urano, N., Matsunaga, T., & Suzuki, S. (1982). Hydrogen production from glucose by immobilized growing cells of Clostridium butyricum. European Journal of Applied Microbiology, 16(1), 5–9.

    Article  CAS  Google Scholar 

  28. Benemann, J. R., Berenson, J. A., Kaplan, N. O., & Kamen, M. D. (1937). Hydrogen evolution by a chloroplast–ferredoxin–hydrogenase system. Proceedings of the National Academy of Science, 70(8), 2317–2320.

    Article  Google Scholar 

  29. McTavish, H. (1998). Hydrogen evolution by direct electron transfer from photosystem I to hydrogenases. Journal of Biochemistry, 123(4), 644–649.

    CAS  Google Scholar 

  30. Li, D., Yuan, Z., Sun, Y., Kong, X., & Zhang, Y. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen energy, 34, 812–820.

    Article  CAS  Google Scholar 

  31. Gaudy, A., & Gaudy, E. (1980). Microbiology for environmental scientists and engineers. NJ: McGraw-Hill.

    Google Scholar 

  32. Fang, H. H. P., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87–93.

    Article  CAS  Google Scholar 

  33. Akashah, M., Yoshida, M., Watanabe, M., Nakamura, M., & Mastsumoto, J. (1997). Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Water Science and Technology, 36(6–7), 279–286.

    Google Scholar 

  34. Noike, T., & Mizuno, O. (2000). Hydrogen fermentation of organic municipal wastes. Water Science and Technology, 42(12), 155–162.

    CAS  Google Scholar 

  35. Khanal, S. K., Chen, W. H., Li, L., & Sung, S. (2004). Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131.

    CAS  Google Scholar 

  36. Oh, S. E., Van Ginkel, S., & Logan, B. E. (2003). The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science and Technology, 37, 5186–5190.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

University of Minnesota Initiatives for Renewable Energy and Environment is gratefully acknowledged for providing financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yecong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhu, J., Wu, X. et al. The Effect of pH on Continuous Biohydrogen Production from Swine Wastewater Supplemented with Glucose. Appl Biochem Biotechnol 162, 1286–1296 (2010). https://doi.org/10.1007/s12010-010-8914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8914-3

Keywords

Navigation