Skip to main content
Log in

Optimized Culture Conditions for the Efficient Production of Porcine Adenylate Kinase in Recombinant Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Temperature shift cultivations with amino acid supplementation were optimized to produce porcine adenylate kinase (ADK) in recombinant Escherichia coli harboring a pUC-based recombinant plasmid under the control of the trp promoter. With regard to temperature control, the culture condition was initially maintained at 35 °C for cellular growth, but ADK expression was suppressed until the late logarithmic growth phase; subsequently, a temperature shift was applied (from 35 °C to 42 °C), which resulted in maximal ADK production. In addition, supplementation of amino acids, especially valine and leucine, during the temperature shift stimulated ADK expression from 3.5% to 9.2% and 8.6% of the total protein, respectively. After optimization, 1 g ADK per liter was produced within 16 h of cultivation with a dry cell weight of 21.8 g/l. In this system, there was no loss of the recombinant plasmid during cultivation without selective pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Yildirim, S., Konrad, D., Calvez, S., Drider, D., Prevost, H., & Lacroix, C. (2007). Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Applied Microbiology and Biotechnology, 77, 525–531.

    Article  CAS  Google Scholar 

  2. Tabandeh, F., Shojaosadati, S. A., Zomorodipour, A., Khodabandeh, M., Sanati, M. H., & Yakhchali, B. (2004). Heat-induced production of human growth hormone by high cell density cultivation of recombinant Escherichia coli. Biotechnology Letters, 26, 245–250.

    Article  CAS  Google Scholar 

  3. Schmidt, M., Viaplana, E., Hoffmann, F., Marten, S., Villaverde, A., & Rinas, U. (1999). Secretion-dependent proteolysis of heterologous protein by recombinant Escherichia coli is connected to an increased activity of the energy-generating dissimilatory pathway. Biotechnology and Bioengineering, 66, 61–67.

    Article  CAS  Google Scholar 

  4. Frey, K. M., Oppermann-Sanio, F. B., Schmidt, H., & Steinbuchel, A. (2002). Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Applied and Environmental Microbiology, 68, 3377–3384.

    Article  CAS  Google Scholar 

  5. Kim, D. M., & Swartz, J. R. (2001). Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnology and Bioengineering, 74, 309–316.

    Article  CAS  Google Scholar 

  6. Matsui, T., Sato, H., Yamamuro, H., Shinzato, N., Matsuda, H., Misawa, S., et al. (2008). High cell density cultivation of recombinant E. coli for hirudin variant 1 production by temperature shift controlled by pUC18-based replicative origin. Applied Microbiology and Biotechnology, 80, 779–783.

    Article  CAS  Google Scholar 

  7. Hibino, T., Misawa, S., Wakiyama, M., Maeda, S., Yazaki, K., Kumagai, I., et al. (1994). High-level expression of porcine muscle adenylate kinase in Escherichia coli: Effects of the copy number of the gene and the translational initiation signals. Journal of Biotechnology, 32, 139–148.

    Article  CAS  Google Scholar 

  8. Matsui, T., Yokota, H., Sato, S., Mukataka, S., & Takahashi, J. (1989). Pressurized culture of Escherichia coli for a high concentration. Agriculture and Biological Chemistry, 53, 2115–2120.

    CAS  Google Scholar 

  9. Matsui, T., Shinzato, N., Haruto, Y., Takahashi, J., & Sato, S. (2006). High cell density cultivation of recombinant E. coli with a pressurized culture. Process Biochemistry, 41, 920–924.

    Article  CAS  Google Scholar 

  10. Matsui, T., Sato, H., Yamamuro, H., Misawa, S., Shinzato, N., Matsuda, H., et al. (2008). High cell density cultivation of recombinant Escherichia coli for hirudin variant 1 production. Journal of Biotechnology, 134, 88–92.

    Article  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  13. Ansorge, M. B., & Kula, M. R. (2000). Production of recombinant l-leucine dehydrogenase from Bacillus cereus in pilot scale using the runaway replication system E. coli[pIET98]. Biotechnology and Bioengineering, 68, 557–562.

    Article  CAS  Google Scholar 

  14. Winter, J., Neubauer, P., Glockshuber, R., & Rudolph, R. (2001). Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. Journal of Biotechnology, 84, 175–185.

    Article  CAS  Google Scholar 

  15. Phue, J. N., & Shiloach, J. (2004). Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). Journal of Biotechnology, 109, 21–30.

    Article  CAS  Google Scholar 

  16. Peng, L., & Shimizu, K. (2003). Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Applied Microbiology and Biotechnology, 61, 163–178.

    CAS  Google Scholar 

  17. Chang, L. L., Hwang, L. Y., Hwang, C. F., & Mou, D. G. (1991). Study of high density Escherichia coli fermentation for production of porcine somatotropin protein. Annals of the New York Academy of Sciences, 646, 259–272.

    Article  CAS  Google Scholar 

  18. Kavanagh, J. M., & Barton, G. W. (2008). Productivity improvement of recombinant Escherichia coli fermentation via robust optimization. Bioprocess and Biosystems Engineering, 31, 137–143.

    Article  CAS  Google Scholar 

  19. Misawa, S., & Kumagai, I. (1999). Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Biopolymers, 51, 297–307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, T., Togari, T., Misawa, S. et al. Optimized Culture Conditions for the Efficient Production of Porcine Adenylate Kinase in Recombinant Escherichia coli . Appl Biochem Biotechnol 162, 823–829 (2010). https://doi.org/10.1007/s12010-010-8913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8913-4

Keywords

Navigation