Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 805–822 | Cite as

Mercury(II) Biosorption Using Lessonia sp. Kelp

  • Mariana Reategui
  • Holger Maldonado
  • Martha Ly
  • Eric GuibalEmail author
Article

Abstract

Lessonia nigrescens and Lessonia trabeculata kelps have been tested for the sorption of mercury from aqueous solutions. A pretreatment (using CaCl2) allowed stabilizing the biomass that was very efficient for removing Hg(II) at pH 6–7. Sorption isotherms were described by the Langmuir equation with sorption capacities close to 240–270 mg Hg g−1 at pH 6. The temperature had a negligible effect on the distribution of the metal at equilibrium. The presence of chloride anions had a more marked limiting impact than sulfate and nitrate anions. The uptake kinetics were modeled using the pseudo-second-order equation that fitted better experimental data than the pseudo-first-order equation. The particle size hardly influenced sorption isotherms and uptake kinetics, indicating that sorption occurs in the whole mass of the biosorbent and that intraparticle mass transfer resistance was not the limiting rate. Varying the sorbent dosage and the initial metal concentration influenced the equilibrium, but the kinetic parameters were not drastically modified. Metal can be eluted with hydrochloric acid, citric acid, or acidic KI solutions.

Keywords

Mercury(II) Lessonia Kelp Isotherms Kinetics Pseudo-second-order equation Desorption 

Notes

Acknowledgements

Authors thank the European Commission for the funding of the project BIOPROAM (Contract no. AML/190901/06/18414/II-0548-FC-FA, in the framework of ALFA program). Authors acknowledge Jean-Marie Taulemesse (Centre des Matériaux de Grande Diffusion at Ecole des Mines d’Alès) for his technical support for SEM-EDAX analysis.

Supplementary material

12010_2010_8912_MOESM1_ESM.doc (28 kb)
Fig. A1 (DOC 28 kb)
12010_2010_8912_MOESM2_ESM.doc (46 kb)
Fig. A2 (DOC 45 kb)

References

  1. 1.
    Patterson, J. (1997). Aqueous Mercury Treatment. Washington: U.S.E.P.A.Google Scholar
  2. 2.
    Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2001). Journal of Hazardous Materials, B84, 73–82.CrossRefGoogle Scholar
  3. 3.
    Kuncoro, E. P., Roussy, J., & Guibal, E. (2005). Sep. Sci. Technol., 40, 659–684.CrossRefGoogle Scholar
  4. 4.
    Duche, S. N., Pawar, S. D., & Dhadke, P. M. (2002). Separation Science and Technology, 37, 2215–2229.CrossRefGoogle Scholar
  5. 5.
    Meera, R., Francis, T., & Reddy, M. L. P. (2001). Hydrometallurgy, 61, 93–103.CrossRefGoogle Scholar
  6. 6.
    Vieira, R. S., Guibal, E., Silva, E. A., & Beppu, M. M. (2007). Adsorption-Journal of the International Adsorption Society, 13, 603–611.Google Scholar
  7. 7.
    Atia, A. A., Donia, A. M., & Elwakeel, K. Z. (2005). Reactive and Functional Polymers, 65, 267–275.CrossRefGoogle Scholar
  8. 8.
    Guibal, E., Gavilan, K. C., Bunio, P., Vincent, T., & Trochimczuk, A. (2007). Separation Science and Technology, 43, 2406–2433.CrossRefGoogle Scholar
  9. 9.
    Volesky, B., & Holan, Z. R. (1995). Biotechnology Progress, 11, 235–250.CrossRefGoogle Scholar
  10. 10.
    Zeroual, Y., Moutaouakkil, A., Dzairi, F. Z., Talbi, M., Chung, P. U., Lee, K., et al. (2003). Bioresource Technology, 90, 349–351.CrossRefGoogle Scholar
  11. 11.
    Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2008). Biochemical Engineering Journal, 38, 319–325.CrossRefGoogle Scholar
  12. 12.
    Svecova, L., Spanelova, M., Kubal, M., & Guibal, E. (2006). Separation and Purification Technology, 52, 142–153.CrossRefGoogle Scholar
  13. 13.
    Vijayaraghavan, K., & Yun, Y.-Y. (2008). Biotechnology Advances, 26, 266–291.CrossRefGoogle Scholar
  14. 14.
    de França, F., Padilha, F., & da Costa, A. (2006). Applied Biochemistry and Biotechnology, 128, 23–32.CrossRefGoogle Scholar
  15. 15.
    Michalak, I. & Chojnacka, K. (2009). Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-12009-18635-12017.
  16. 16.
    Picardo, M., de Melo Ferreira, A., & da Costa, A. (2006). Applied Biochemistry and Biotechnology, 134, 193–206.CrossRefGoogle Scholar
  17. 17.
    Romera, E., González, F., Ballester, A., Blázquez, M. L., & Muñoz, J. A. (2007). Bioresource Technology, 98, 3344–3353.CrossRefGoogle Scholar
  18. 18.
    Tajes-Martinez, P., Beceiro-Gonzalez, E., Muniategui-Lorenzo, S., & Prada-Rodriguez, D. (2006). Talanta, 68, 1489–1496.CrossRefGoogle Scholar
  19. 19.
    Fourest, E., & Volesky, B. (1997). Applied Biochemistry and Biotechnology, 67, 215–226.CrossRefGoogle Scholar
  20. 20.
    Dubois, M. A., Dozol, J. F., & Massiani, C. (1995). Journal of Analytical and Applied Pyrolysis, 31, 129–140.CrossRefGoogle Scholar
  21. 21.
    Reategui, M., Maldonado, H., Ly, M., & Guibal, E. (2009). Advances in Materials Research, 71–73, 585–588.CrossRefGoogle Scholar
  22. 22.
    Decarvalho, R. P., Chong, K. H., & Volesky, B. (1994). Biotechnological Letters, 16, 875–880.CrossRefGoogle Scholar
  23. 23.
    Matheickal, J. T., Yu, Q., & Woodburn, G. M. (1999). Water Research, 33, 335–342.CrossRefGoogle Scholar
  24. 24.
    Ho, Y. S. (2006). Water Research, 40, 119–125.CrossRefGoogle Scholar
  25. 25.
    Liu, Y., & Liu, Y.-Y. (2007). Separation and Purification Technology, 61, 229–242.CrossRefGoogle Scholar
  26. 26.
    Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., & Muñoz, J. A. (2008). Journal of Hazardous Materials, 158, 316–323.CrossRefGoogle Scholar
  27. 27.
    Davis, T. A., Volesky, B., & Mucci, A. (2003). Water Research, 37, 4311–4330.CrossRefGoogle Scholar
  28. 28.
    Malik, D. J., Streat, M., & Greig, J. (1999). Institution of Chemical Engineers Translations, 77, 227–233.Google Scholar
  29. 29.
    Hansen, H. K., Ribeiro, A., & Mateus, E. (2006). Minerals Engineering, 19, 486–490.CrossRefGoogle Scholar
  30. 30.
    Ghodbane, I., & Hamdaoui, O. (2008). Journal of Hazardous Materials, 160, 301–309.CrossRefGoogle Scholar
  31. 31.
    Kaçar, Y., Arpa, C., Tan, S., Denizli, A., Genç, O., & Arica, Y. (2002). Process Biochemistry, 37, 601–610.CrossRefGoogle Scholar
  32. 32.
    Bayramoglu, G., Tuzun, I., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). International Journal of Mineral Processing, 81, 35–43.CrossRefGoogle Scholar
  33. 33.
    Lloyd-Jones, P. J., Rangel-Mendez, J. R., & Streat, M. (2004). Institution of Chemical Engineers Translations, 82B, 301–311.Google Scholar
  34. 34.
    Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., & Marhaba, T. F. (2006). Bioresource Technology, 97, 2321–2329.Google Scholar
  35. 35.
    Prasanna Kumar, Y., King, P., & Prasad, V. S. R. K. (2007). Chemical Engineering Journal, 129, 161–166.CrossRefGoogle Scholar
  36. 36.
    Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA) (2002) v. 3.1. http://www.kemi.kth.se/medusa. Accessed 7 February 2007.
  37. 37.
    Chen, J. Z., Tao, X. C., Xu, J., Zhang, T., & Liu, Z. L. (2005). Process Biochemistry, 40, 3675–3679.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mariana Reategui
    • 1
    • 2
  • Holger Maldonado
    • 1
  • Martha Ly
    • 1
  • Eric Guibal
    • 2
    Email author
  1. 1.Departamento Académico de QuímicaUniversidad Peruana Cayetano HerediaLimaPeru
  2. 2.Laboratoire Génie de l’Environnement IndustrielEcole des Mines d’AlèsAlès cedexFrance

Personalised recommendations