Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 757–765 | Cite as

Preparation of a Crosslinked Bioimprinted Lipase for Enrichment of Polyunsaturated Fatty Acids from Fish Processing Waste

  • Jinyong YanEmail author
  • Lifan Li
  • Qianli Tang
  • Manzhou Jiang
  • Shenzhou Jiang
Article

Abstract

Geotrichum sp. lipase modified with a combined method composed of crosslinking and bioimprinting was employed to selectively hydrolyze waste fish oil for enrichment of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in glycerides. Crosslinked polymerization by monomer (polyethylene glycol 400 dimethyl acrylate), crosslinker (trimethylolpropane trimethylacrylate), and photoinitiator (benzoin methyl ether) coupled to bioimprinting using palmitic acid as imprint molecule, resulted in much more effective enzyme preparation used in aqueous hydrolysis reaction. Since the crosslinked polymerization modification maintained bioimprinted property and gave good dispersion of enzyme in reaction mixture, the crosslinked bioimprinted enzyme exhibited higher hydrolysis temperature, enhanced specific activity, shorter hydrolysis time, and better operational stability compared to free lipase. Crude fish oil was treated at 45 °C with this crosslinked bioimprinted lipase for 8 h, and 46% hydrolysis degree resulted in the production of glycerides containing 41% of EPA and DHA (EPA+DHA), achieving 85.7% recovery of initial EPA and DHA. The results suggested that bioimprinted enzymes did not lose their induced property in aqueous environment when prepared according to the described crosslinking–bioimprinting method. It could also be seen that the crosslinked bioimprinted lipase was effective in producing glycerides that contained a higher concentration of polyunsaturated fatty acid with better yield.

Keywords

Lipase Crosslinking Bioimprinting Hydrolysis Polyunsaturated fatty acid 

Notes

Acknowledgments

This study was financially supported by the Scientific Research and Technological Development Program of Guangxi (0815006-1-2). The authors acknowledge Tingxiu Jin, Liangjun Zhou, and Xiaojun Luan for their valuable assistance.

References

  1. 1.
    Hudson, E. P., Eppler, R. K., & Clark, D. S. (2005). Curr Opin Biotechnol, 16, 637–643.CrossRefGoogle Scholar
  2. 2.
    Bagi, K., Simon, L. M., & Szajani, B. (1997). Enzyme Microb Technol, 20, 531–535.CrossRefGoogle Scholar
  3. 3.
    Mateo, C., Abian, O., Lafnente, R. F., & Guisan, J. M. (2000). Enzyme Microb Technol, 26, 509–515.CrossRefGoogle Scholar
  4. 4.
    Okahata, Y., & Mori, T. (1997). Trends Biotechnol, 15, 50–54.CrossRefGoogle Scholar
  5. 5.
    Fishman, A., & Cogan, U. (2003). J Mol Catal B-Enzym, 22, 193–202.CrossRefGoogle Scholar
  6. 6.
    Foresti, M. L., Alimenti, G. A., & Ferreira, M. L. (2005). Enzyme Microb Technol, 36, 338–349.CrossRefGoogle Scholar
  7. 7.
    Yilmaz, E. (2002). World J Microbiol Biotechnol, 18, 37–40.CrossRefGoogle Scholar
  8. 8.
    Okahata, Y., Hatano, A., & Ijiro, K. (1995). Tetrahedron Asymmetry, 6, 1311–1322.CrossRefGoogle Scholar
  9. 9.
    Furukawa, S. Y., Ono, T., Ijima, H., & Kawakami, K. (2001). J Mol Catal B-Enzym, 15, 65–70.CrossRefGoogle Scholar
  10. 10.
    Furukawa, S. Y., Ono, T., Ijima, H., & Kawakami, K. (2002). J Mol Catal B-Enzym, 17, 23–28.CrossRefGoogle Scholar
  11. 11.
    González, N. H., & Braco, L. (1997). J Mol Catal B-Enzym, 3, 111–119.CrossRefGoogle Scholar
  12. 12.
    Peiβker, F., & Fischer, L. (1999). Bioorg Med Chem, 7, 2231–2237.CrossRefGoogle Scholar
  13. 13.
    Yan, J. Y., Yan, Y. J., Yang, J. K., Xu, L., & Liu, Y. (2009). Process Biochem, 44, 1128–1132.CrossRefGoogle Scholar
  14. 14.
    Hayes, D. G. (2004). J Am Oil Chem Soc, 81, 1077–1102.CrossRefGoogle Scholar
  15. 15.
    Haas, M. J., Kramer, J. K. G., Neill, G. M., Scott, K., Foglia, T. A., Sehat, N., et al. (1999). Lipids, 34, 979–987.CrossRefGoogle Scholar
  16. 16.
    Shimada, Y., Maruyama, K., Sugihara, A., Moriyama, S., & Tominaga, Y. (1997). J Am Oil Chem Soc, 74, 1441–1446.CrossRefGoogle Scholar
  17. 17.
    Shimada, Y., Sugihara, A., Nakano, H., Kuramoto, T., Nagao, T., Gemba, M., et al. (1997). J Am Oil Chem Soc, 74, 97–101.CrossRefGoogle Scholar
  18. 18.
    Shimada, Y., Maruyama, K., Nakamura, M., Nakayama, S., Sugihara, A., & Tominaga, Y. (1995). J Am Oil Chem Soc, 72, 1577–1581.CrossRefGoogle Scholar
  19. 19.
    Shimada, Y., Maruyama, K., Okazaki, S., Nakamura, M., Sugihara, A., & Tominaga, Y. (1994). J Am Oil Chem Soc, 71, 951–954.CrossRefGoogle Scholar
  20. 20.
    Shimada, Y., Sugihara, A., & Tominaga, Y. (2001). J Biosci Bioeng, 91, 529–538.CrossRefGoogle Scholar
  21. 21.
    Macrae, A. R. (1983). J Am Oil Chem Soc, 60, 291–294.CrossRefGoogle Scholar
  22. 22.
    Mcneill, Gp., Ackman, R. G., & Moore, S. R. (1996). J Am Oil Chem Soc, 73, 1403–1407.CrossRefGoogle Scholar
  23. 23.
    Sun, T., Pigott, G. M., & Herwig, R. P. (2002). J Food Sci, 67, 130–136.CrossRefGoogle Scholar
  24. 24.
    Yan, J. Y., Yang, J. K., Xu, L., & Yan, Y. J. (2007). J Mol Catal B-Enzym, 49, 28–35.CrossRefGoogle Scholar
  25. 25.
    Persson, M., Mladenoska, I., Wehtje, E., & Adlercreutz, P. (2002). Enzyme Microb Technol, 31, 833–841.CrossRefGoogle Scholar
  26. 26.
    Yan, J. Y., & Yan, Y. J. (2008). Appl Microbiol Biot, 78, 431–439.CrossRefGoogle Scholar
  27. 27.
    Liu, Y. X., Jin, Q. Z., Shan, L., Liu, Y. F., Shen, W., & Wang, X. G. (2008). Ultrason Sonochem, 15, 402–407.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jinyong Yan
    • 1
    Email author
  • Lifan Li
    • 2
  • Qianli Tang
    • 2
  • Manzhou Jiang
    • 1
  • Shenzhou Jiang
    • 1
  1. 1.Nanning Zhuangdu Biotechnology Limited CompanyNanningChina
  2. 2.Guangxi Traditional Chinese Medical UniversityNanningChina

Personalised recommendations