Skip to main content
Log in

Optimizing Dilute-Acid Pretreatment of Rapeseed Straw for Extraction of Hemicellulose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars prior to fermentation. Hydrolysis can be performed enzymatically or with mineral acids. In this study, dilute sulfuric acid was used as a catalyst for the pretreatment of rapeseed straw. The purpose of this study is to optimize the pretreatment process in a 15-mL bomb tube reactor and investigate the effects of the acid concentration, temperature, and reaction time. These parameters influence hemicellulose removal and production of sugars (xylose, glucose, and arabinose) in the hydrolyzate as well as the formation of by-products (furfural, 5-hydroxymethylfurfural, and acetic acid). Statistical analysis was based on a model composition corresponding to a 33 orthogonal factorial design and employed the response surface methodology to optimize the pretreatment conditions, aiming to attain maximum xylan, mannan, and galactan (XMG) extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: H2SO4 concentration of 1.76% and temperature of 152.6 °C with a reaction time of 21 min. Under these optimal conditions, 85.5% of the total sugar was recovered after acid hydrolysis (78.9% XMG and 6.6% glucan). The hydrolyzate contained 1.60 g/L glucose, 0.61 g/L arabinose, 10.49 g/L xylose, mannose, and galactose, 0.39 g/L cellobiose, 0.94 g/L fructose, 0.02 g/L 1,6-anhydro-glucose, 1.17 g/L formic acid, 2.94 g/L acetic acid, 0.04 g/L levulinic acid, 0.04 g/L 5-hydroxymethylfurfural, and 0.98 g/L furfural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petersson, A., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A. B. (2007). Biomass and Bioenergy, 31(11–12), 812–819.

    Article  CAS  Google Scholar 

  2. Pimentel, D., & Patzek, T. W. (2005). Natural Resources Research, 14(1), 65–76.

    Article  CAS  Google Scholar 

  3. Farell, A. E., Pelvin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.

    Article  CAS  Google Scholar 

  4. Wyman, C. E. (1996). Ethanol production from lignocellulosic biomass: Overview. In C. E. Wyman (Ed.), Handbook on bioethanol, production and utilization (pp. 1–18). Washington DC: Taylor & Francis.

    Google Scholar 

  5. Sheehan, J., & Himmel, M. (1999). Biotechnology Progress, 15, 817–827.

    Article  CAS  Google Scholar 

  6. Zhao, Y., Wang, Y., Zhu, J. Y., Ragauskas, A., & Deng, Y. (2008). Biotechnology and Bioenergy, 99, 1320–1328.

    Article  CAS  Google Scholar 

  7. Lu, X. B., Zhang, Y. M., Yang, J., & Liang, Y. (2007). Chemical Engineering and Technology, 30, 938–944.

    Article  CAS  Google Scholar 

  8. Rowell, R. M., & Keany, F. M. (1991). Wood Fiber Sci, 23, 15–22.

    CAS  Google Scholar 

  9. Sun, X. F., Sun, R. C., & Sun, J. X. (2002). Journal of Agricultural and Food Chemistry, 50, 6428–6433.

    Article  CAS  Google Scholar 

  10. Gong, C. S., Chen, C. S., & Chen, L. F. (1993). Applied Biochemistry and Biotechnology, 39/40, 83–88.

    Article  Google Scholar 

  11. Almazán, O., González, L., & Gálvez, L. (2001). Sugar Cane International, 7, 3–8.

    Google Scholar 

  12. Um, B. H., & van Walsum, G. P. (2009). Applied Biochemistry and Biotechnology, 153(1-3), 157–183.

    Article  CAS  Google Scholar 

  13. Kim, S. B., Um, B. H., & Park, S. C. (2001). Applied Biochemistry and Biotechnology, 91–93, 81–94.

    Article  Google Scholar 

  14. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34.

    Article  CAS  Google Scholar 

  15. Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biotechnology Progress, 15, 777–793.

    Article  CAS  Google Scholar 

  16. Han, K. H., Ko, J. H., & Yang, S. H. (2007). Biofuels Bioproducts and Biorefining, 1, 135–146.

    Article  CAS  Google Scholar 

  17. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83(1), 1–11.

    Article  CAS  Google Scholar 

  18. Galbe, M., Sassner, P., Wingren, A., & Zacchi, G. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 303–327.

    Article  CAS  Google Scholar 

  19. Um, B. H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105, 115–126.

    Article  Google Scholar 

  20. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J. et al. (2002). Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis of Corn Stover, NREL/TP-510-32438.

  21. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  22. Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). Biofuels Bioproducts and Biorefining, 2(1), 58–73.

    Article  CAS  Google Scholar 

  23. Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society, A321, 523–536.

    Google Scholar 

  24. Chum, H. L., Johnson, D. K., Black, S. K., & Overend, R. O. (1991). Applied Biochemistry and Biotechnology, 24–25, 1–14.

    Google Scholar 

  25. Abatzoglou, N., Chornet, E., Belkacemi, K., & Overend, R. P. (1992). Chemical Engineering Science, 47(5), 1109–1122.

    Article  CAS  Google Scholar 

  26. Garrote, G., Dominguez, H., & Parajo, J. C. (1999). Holz Roh Werkstoff, 57, 191–202.

    Article  CAS  Google Scholar 

  27. Lu, X., Zhang, Y., & Angerlidaki, I. (2008). Bioresource Technology, 100, 3048–3053.

    Article  CAS  Google Scholar 

  28. Giovanni, M. (1983). Food Technology, 37, 96–105.

    Google Scholar 

  29. NREL. (2004). Chemical Analysis and Testing Laboratory Analytical Procedures (CAT). Golden: National Renewable Energy Laboratory.

    Google Scholar 

  30. Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioproducts and Biorefining, 1, 119–134.

    Article  CAS  Google Scholar 

  31. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong-Keun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, TS., Um, BH., Kim, JS. et al. Optimizing Dilute-Acid Pretreatment of Rapeseed Straw for Extraction of Hemicellulose. Appl Biochem Biotechnol 161, 22–33 (2010). https://doi.org/10.1007/s12010-009-8898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8898-z

Keywords

Navigation