Skip to main content

Advertisement

Log in

Evaluation of Lipase Production by Genetic Algorithm and Particle Swarm Optimization and Their Comparative Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper presents the nature-inspired genetic algorithm (GA) and particle swarm optimization (PSO) approaches for optimization of fermentation conditions of lipase production for enhanced lipase activity. The central composite non-linear regression model of lipase production served as the optimization problem for PSO and GA approaches. The overall optimized fermentation conditions obtained thereby, when verified experimentally, have brought about a significant improvement (more than 15 U/gds (gram dry substrate)) in the lipase titer value. The performance of both optimization approaches in terms of computational time and convergence rate has been compared. The results show that the PSO approach (96.18 U/gds in 46 generations) has slightly better performance and possesses better convergence and computational efficiency than the GA approach (95.34 U/gds in 337 generations). Hence, the proposed PSO approach with the minimal parameter tuning is a viable tool for optimization of fermentation conditions of enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Advances in Colloid and Interface Science, 147–148, 237–250.

    Article  Google Scholar 

  2. Mala, J. G. S., & Takeuchi, S. (2008). Anal. Chem. Insights, 3, 9–19.

    CAS  Google Scholar 

  3. Aloulou, A., Rodriguez, J. A., Fernandez, S., van Oosterhout, D., Puccinelli, D., & Carrière, F. (2006). Biochimica et Biophysica Acta, 1761, 995–1013.

    CAS  Google Scholar 

  4. Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  5. Kumari, A., Mahapatra, P., Garlapati, V. K., & Banerjee, R. (2009). Biotechnol Biofuels, 2, 1.

    Article  Google Scholar 

  6. Jegannathan, K. R., Abang, S., Poncelet, D., Chan, E. S., & Ravindra, P. (2008). Critical Reviews in Biotechnology, 28(4), 253–264.

    Article  CAS  Google Scholar 

  7. Mahapatra, P., Kumari, A., Garlapati, V. K., Banerjee, R., & Nag, A. (2009). Biocatalysis and Biotransformation, 27(2), 124–130.

    Article  CAS  Google Scholar 

  8. Kumari, A., Mahapatra, P., Garlapati, V. K., Banerjee, R., & Dasgupta, S. (2009). Food Technology and Biotechnology, 47(1), 13–18.

    CAS  Google Scholar 

  9. Mahapatra, P., Kumari, A., Garlapati, V. K., Banerjee, R., & Nag, A. (2009). Journal of Molecular Catalysis. B, Enzymatic, 60, 57–63.

    Article  CAS  Google Scholar 

  10. Kumari, A., Mahapatra, P., Garlapati, V. K., & Banerjee, R. (2008). Bioprocess and Biosystems Engineering, 31, 291–298.

    Article  CAS  Google Scholar 

  11. Sun, S. Y., Xu, Y., & Wang, D. (2009). Bioresource Technology, 100(9), 2607–2612.

    Article  CAS  Google Scholar 

  12. Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Biochemical Engineering Journal, 44(1), 13–18.

    Article  CAS  Google Scholar 

  13. Shukla, P., Garai, D., Zafar, M., Gupta, K., & Shrivastava, S. (2007). J Appl Sci Environ Sanit, 2(3), 93–103.

    Google Scholar 

  14. Essamri, M., Deyris, V., & Comeau, L. (1998). Journal of Biotechnology, 60, 97–103.

    Article  CAS  Google Scholar 

  15. Mateos Diaz, J. C., Rodriguez, J. A., Roussos, S., Cordova, J., Abousalham, A., Carriere, F., et al. (2006). Enzyme and Microbial Technology, 39, 1042–1050.

    Article  CAS  Google Scholar 

  16. Rodriguez, J. A., Mateos, J. C., Nungaray, J., González, V., Bhagnagar, T., Roussos, S., et al. (2006). Process Biochemistry, 41, 2264–2269.

  17. Hiol, A., Jonzo, M. D., Rugani, N., Druet, D., Sarda, L., & Comeaua, L. C. (2000). Enzyme and Microbial Technology, 26, 421–430.

    Article  CAS  Google Scholar 

  18. Sun, S. Y., & Xu, Y. (2008). Process Biochemistry, 43, 219–224.

    Article  CAS  Google Scholar 

  19. Lorenzo, M. D., Hidalgo, A., Haas, M., & Bornscheuer, U. T. (2005). Applied and Environmental Microbiology, 71(12), 8974–8977.

    Article  Google Scholar 

  20. Rathi, P., Goswami, V. K., Sahai, V., & Gupta, R. (2002). Journal of Applied Microbiology, 93(6), 930–936.

    Article  CAS  Google Scholar 

  21. Aravindan, R., & Viruthagiri, T. (2007). Journal of Chemical Technology and Biotechnology, 82(5), 460–470.

    Article  Google Scholar 

  22. Shukla, P., Garai, D., Zafar, M., Gupta, K., & Shrivastava, S. (2009). Journal of Applied Science and Management, 2(3), 93–103.

    Google Scholar 

  23. Venil C.K., Kamatshi N.S., Lakshmanaperumalsamy P. (2009) Internet J Microbiol 7(1), 29–33.

    Google Scholar 

  24. Tang, W. J., & Wu, Q. H. (2009). Transactions of the Institute of Measurement and Control, 31, 495. doi:10.1177/0142331208094044.

    Article  Google Scholar 

  25. Back, T. (1996). Evolutionary algorithms in theory and practice. New York: Oxford University Press.

    Google Scholar 

  26. Holland, J. H. (1992). Adaptation in natural and artificial systems. Cambridge: MIT Press.

    Google Scholar 

  27. Kennedy J., Eberhart R.C. (1995) Particle swarm optimization. In IEEE International conference on neural networks (Perth, Australia). IEEE Service Center, Piscataway, NJ, pp. 1942–1948

  28. Shi Y., Eberhart R.C. (1998) Parameter selection in particle swarm optimization. In Evolutionary programming VII: Proceedings of the seventh annual conference on evolutionary programming. New York, pp. 591–600

  29. Liua, L., Sunc, J., Zhanga, D., Dua, G., Chenb, J., & Xuc, W. (2009). Enzyme and Microbial Technology, 44, 24–32.

    Article  Google Scholar 

  30. Skolpap, W., Nuchprayoon, S., Scharer, J. M., Grisdanurak, N., Douglas, P. L., & Moo-Young, M. (2008). Chemical Engineering Science, 63, 4090–4099.

    Article  CAS  Google Scholar 

  31. Ashlock, D. (2006). Evolutionary computation for modeling and optimization. New York: Springer.

    Google Scholar 

  32. Pierre, D. A. (2002) Optimization. In J. Trefil (ed.), McGraw-Hill Encyclopedia of Science and Technology, 9th ed. (pp. 479–485). New York: McGraw-Hill Inc.

  33. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: Process and product optimization using designed experiments. Hoboken: Wiley.

    Google Scholar 

  34. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  35. Fogel, & David, B. (2006). Evolutionary computation: Toward a new philosophy of machine intelligence (3rd ed.). Piscataway: IEEE Press.

    Google Scholar 

  36. Trelea, I. C. (2003). Inform Process Lett, 85(6), 317–325.

    Article  Google Scholar 

  37. Angeline P.J. (1998) Evolutionary optimization versus Particle swarm optimization: philosophy and performance differences. In Evolutionary programming VII: Proceedings of the seventh annual conference on evolutionary programming, San Diego, CA, USA

  38. Raquel C., Naval P. (2005) An effective use of crowding distance in multiobjective particle swarm optimization. In Proceedings of the 2005 conference on genetic and evolutionary computation. Washington DC, USA, pp. 257–264

  39. Deb K., Agrawal S., Pratab A., Meyarivan T. (2000) A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II. In Proceedings of parallel problem solving from nature VI Conference, pp. 849–858.

  40. Coello C., Pulido G., Salazar M. (2004) Handling multiobjectives with particle swarm optimization. In IEEE Transactions on evolutionary computation, 8, pp. 256–279

  41. Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Heidelberg: Springer.

    Google Scholar 

  42. Singh, A., Majumder, A., & Goyal, A. (2008). Bioresource Technology, 99, 8201–8206.

    Article  CAS  Google Scholar 

  43. Dutta, J. R., Dutta, P. K., & Banerjee, R. (2005). Process Biochemistry, 40, 879–884.

    Article  CAS  Google Scholar 

  44. Eberhart, R. C., & Shi, Y. (1998) Comparison between genetic algorithms and particle swarm optimization. In Evolutionary Programming VII: Proceedings of the seventh annual conference on evolutionary programming. San Diego, CA, USA

  45. Cordova, J., Nemmaoui, M., Ismaıli-Alaoui, M., Morin, A., Roussos, S., Raimbault, M., et al. (1998). Journal of Molecular Catalysis. B, Enzymatic, 5, 75–78.

    Article  CAS  Google Scholar 

  46. Kempka, A. P., Lipke, N. L., Pinheiro, T. L. F., Menoncin, S., Treichel, H., Freire, D. M. G., et al. (2008). Bioprocess and Biosystems Engineering, 31, 119–125.

    Article  CAS  Google Scholar 

  47. Gombert, A. K., Pinto, A. L., Castilho, L. R., & Freire, M. G. D. (1999). Process Biochemistry, 35, 85–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from the Ministry of Human Resource Development, Government of India is acknowledged gratefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garlapati, V.K., Vundavilli, P.R. & Banerjee, R. Evaluation of Lipase Production by Genetic Algorithm and Particle Swarm Optimization and Their Comparative Study. Appl Biochem Biotechnol 162, 1350–1361 (2010). https://doi.org/10.1007/s12010-009-8895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8895-2

Keywords

Navigation