Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 617–624 | Cite as

MFα Signal Peptide Enhances the Expression of Cellulase eg1 Gene in Yeast

  • Hong Zhu
  • Side Yao
  • Shilong WangEmail author
Article

Abstract

Ethanol production from lignocellulose by recombinant yeast with high level expression of heterologous cellulase genes has been a major anticipation. The native secretion signal sequence of the cellulase endoglucanase I (eg1) gene was replaced by Saccharomyces cerevisiae mating factor α prepro-leader sequence (MFα). The transformants containing native secretion signal (Y 1) and MFα secretion signal (Y 2) were characterized with respect to gene expression and growth on cellulose substrate. Increased enzyme activity and cellulose utilization were observed. The enzyme activity of Y 2 was 0.084 U/ml, 61.5% higher than Y 1 (0.052 U/ml). The sufficiency parameter (S value) was raised from 0.6 to 0.84. MFα signal peptide was more efficient than the native signal peptide of eg1 gene, suggesting that signal peptide replacement is an efficient way to enhance the cellulase expression level in yeast, for cellulose-derived ethanol production.

Keywords

Gene expression Signal peptide Endoglucanase I Yeast 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 50673078), the “863” Project of the Ministry of Science and Technology (No. 2007AA022004), the Innovation Program of Shanghai Municipal Education Commission (No. 08ZZ21), and the Yong faculty grant of Anhui Agricultural university (No. yj2008-25).

References

  1. 1.
    Börjesson, J., Peterson, R., & Tjerneld, F. (2007). Enzyme and Microbial Technology, 40(4, 5), 754–762.CrossRefGoogle Scholar
  2. 2.
    Lynd, L. R., Van Zyl, W. H., Mcbride, J., & Laser, M. (2005). Current Opinion in Biotechnology, 16, 577–583.CrossRefGoogle Scholar
  3. 3.
    Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56(1–2), 17–34.CrossRefGoogle Scholar
  4. 4.
    Sticklen, M. B. (2007). Feedstock Crop Genetic Engineering for Alcohol Fuels. Crop Science, 47(6), 2238–2248.CrossRefGoogle Scholar
  5. 5.
    Wyman, C. E. (2003). Biotechnology Progress, 19, 254–262.CrossRefGoogle Scholar
  6. 6.
    Penttilä, M. E., André, L., Saloheimo, M., Lehtovaara, P., & Knowles, J. K. (1987). Yeast, 3(3), 175–185.CrossRefGoogle Scholar
  7. 7.
    van Rooyen, R., Hahn-Hägerdal, B., La Grange, D. C., & van Zyl, W. H. (2005). Journal of Biotechnology, 120, 284–295.CrossRefGoogle Scholar
  8. 8.
    Den Haan, R., Rose, S. H., Lynd, L. R., & van Zyl, W. H. (2007). Metabolic Engineering, 9(1), 87–94.CrossRefGoogle Scholar
  9. 9.
    Fujita, Y., Ito, J., Ueda, M., Fukuda, H., & Kondo, A. (2004). Applied and Environmental Microbiology, 70, 1207–1212.CrossRefGoogle Scholar
  10. 10.
    Den Haan, R., McBride, J. E., Grange, D. C. L., Lynd, L. R., & Van Zyl, W. H. (2007). Enzyme and Microbial Technology, 40(5), 1291–1299.CrossRefGoogle Scholar
  11. 11.
    Han, Y., Wilson, D. B., & Lei, X. G. (1999). Applied and Environmental Microbiology, 65(5), 1915–1918.Google Scholar
  12. 12.
    van den Berg, M. A., & Steensma, H. Y. (1997). Yeast, 13(6), 551–559.CrossRefGoogle Scholar
  13. 13.
    Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  14. 14.
    McBride, J. E., Zietsman, J. J., Van Zyl, W. H., & Lynd, L. R. (2005). Enzyme and Microbial Technology, 37, 93–101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Key Laboratory of Microbial ControlAnhui Agricultural UniversityHefeiPeople’s Republic of China
  2. 2.School of Life Science and TechnologyTongJi UniversityShanghaiPeople’s Republic of China

Personalised recommendations