Skip to main content
Log in

Engineering of a Bacillus α-Amylase with Improved Thermostability and Calcium Independency

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Successful industrial use of amylases requires that they are sufficiently stable and active at application conditions, e.g., at high temperature in starch-liquefaction process. In the present study, site-directed mutagenesis was used to enhance the thermal stability and calcium independency of a mesophilic α-amylase from Bacillus megaterium WHO. Mutations (A53S and H58I) were designed at the calcium-binding site based on the sequence alignment. Kinetic and thermostability parameters of the mutants were analyzed and compared with that of the wild type. In the presence of calcium, the affinity of the enzymes (wild type and mutants) toward starch was increased. In comparison to the wild type, calcium ion had more effect on the catalytic efficiency, k cat/K m, and half-life (at 60 °C) of A53S mutant. In A53S, the dependence of half-life on calcium concentration showed that the enhanced calcium binding is likely to be responsible for the increased stability. In contrast, calcium-independent mutant (H58I) possessed high thermostability. In addition, thermodynamic parameters of amylolytic reaction exhibited an increase in the activation energy and the entropy of the system. Kinetics of irreversible thermal inactivation suggests that the activation energy increased by 1.4-fold in the most stable variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, J. E., & Borchert, T. V. (2000). Biochimica et Biophysica Acta, 1543, 253–274.

    CAS  Google Scholar 

  2. Tanaka, A., & Hoshino, E. (2002). Biochemical Journal, 364, 635–639.

    Article  CAS  Google Scholar 

  3. Haki, G. D., & Rakshit, S. K. (2003). Bioresource Technol, 89, 17–34.

    Article  CAS  Google Scholar 

  4. Tripathi, P., Hofmann, H., Kayastha, A. M., & Ulbrich-Hofmann, R. (2008). Biophysical Chemistry, 137, 95–99.

    Article  CAS  Google Scholar 

  5. Vallee, B. L., Stein, E. A., Sumerwell, W. N., & Fischer, E. H. (1959). Journal of Biological Chemistry, 234, 2901–2905.

    CAS  Google Scholar 

  6. Imanaka, T., Shibazaki, M., & Takagi, M. (1986). Nature, 324, 695–697.

    Article  CAS  Google Scholar 

  7. IIInase, A. (1999). EJB, 2, 7–15.

    Google Scholar 

  8. Yazdani, M., Naderi-Manesh, H., Khajeh, K., Soudi, M. R., Asghari, S. M., & Sharifzadeh, M. (2009). Journal of Basic Microbiology, 49, 119–127.

    Article  CAS  Google Scholar 

  9. Tan, T. C., Mijts, B. N., Swaminathana, K., Patel, B. K. C., & Divne, C. (2008). Journal of Molecular Biology, 378, 850–868.

    Article  CAS  Google Scholar 

  10. Tan, T. C., Yien, Y. Y., Patel, B. K. C., Mijts, B. N., & Swaminathana, K. (2003). Acta Crystal, D59, 2257–2258.

    CAS  Google Scholar 

  11. Sivakumar, N., Li, N., Tang, J. W., Patel, B. K. C., & Swaminathan, K. (2006). FEBS Letters, 580, 2646–2652.

    Article  CAS  Google Scholar 

  12. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3rd ed.). New York: Cold Spring Harbor.

    Google Scholar 

  13. Owen, R. J., & Borman, P. (1987). Nuclear Acids Research, 15, 3631–3632.

    Article  CAS  Google Scholar 

  14. Fisher, C. L., & Pei, G. K. (1997). BioTechniques, 23, 570–574.

    CAS  Google Scholar 

  15. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  16. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. Arrhenius, S. (1889). Zeitschrift fuÉr physikalische Chemie, 4, 226–248.

    Google Scholar 

  19. http://www.expasy.ch/tools.

  20. Fu, L. L., Xu, Z. R., Li, W. F., Shuai, J. B., Lu, P., & Hu, C. X. (2007). Biotechnology Advances, 25, 1–12.

    Article  CAS  Google Scholar 

  21. Dong, G., Vieille, C., & Zeikus, J. G. (1997). Applied and Environmental Microbiology, 63, 3577–3584.

    CAS  Google Scholar 

  22. Janecek, S. (2002). Biologia, 11(57/Suppl), 29–41.

    Google Scholar 

  23. Danson, M. J., Hough, D. W., Russel, R. J., Tayler, G. L., & Pearl, L. (1996). Protein Engineering, 9, 629–630.

    Article  CAS  Google Scholar 

  24. Lin, L. L., Huang, C. C., & Lo, H. F. (2008). Process Biochemistry, 43, 559–565.

    Article  CAS  Google Scholar 

  25. D'Amico, S., Gerday, C., & Feller, G. (2003). Journal of Molecular Biology, 332, 981–988.

    Article  Google Scholar 

  26. Violet, M., & Meunier, J. C. (1989). Biochemical Journal, 263, 665–670.

    CAS  Google Scholar 

  27. Hassan Sajedi, R., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Asoodeh, A., et al. (2005). Enzyme and Microbial Technology, 36, 666–671.

    Article  Google Scholar 

  28. Takasaki, Y. (1982). Agricultural and Biological Chemistry, 46, 1539–1547.

    CAS  Google Scholar 

  29. Kanno, M. (1986). Agricultural and Biological Chemistry, 50, 23–31.

    CAS  Google Scholar 

  30. Tsvetkov, V. T., & Emanuilova, E. I. (1989). Applied Microbiology and Biotechnology, 31, 246–248.

    Article  CAS  Google Scholar 

  31. Hagihara, H., Igarashi, K., Hayashi, Y., Kitayama, K., Endo, K., Ozawa, T., et al. (2002). J Appl Glycosci, 49, 281–289.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors express their gratitude to the research council of Tarbiat Modares University for the financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Khajeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghollasi, M., Khajeh, K., Naderi-Manesh, H. et al. Engineering of a Bacillus α-Amylase with Improved Thermostability and Calcium Independency. Appl Biochem Biotechnol 162, 444–459 (2010). https://doi.org/10.1007/s12010-009-8879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8879-2

Keywords

Navigation