Skip to main content
Log in

The Influence of Initial Xylose Concentration, Agitation, and Aeration on Ethanol Production by Pichia stipitis from Rice Straw Hemicellulosic Hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration (V flask/V medium ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y P/S; cell yield factor, Y X/S; and ethanol volumetric productivity, Q P) was investigated through a 22 full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y P/S = 0.37 g/g and Q P = 0.39 g/l.h) were found when the lowest aeration (2.5 V flask/V medium ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hu, G., Heitmann, J. A., & Rojas, O. J. (2008). Bioresources, 3, 270–294.

    Google Scholar 

  2. Kumar, A., Singh, L. K., & Ghosh, S. (2009). Bioresource Technology, 100, 3293–3297. doi:10.1016/j.biortech.2009.02.023.

    Article  CAS  Google Scholar 

  3. Demirbas, A. (2005). Energy Sources, 27, 327–337. doi:10.1080/00908310390266643.

    Article  CAS  Google Scholar 

  4. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34. doi:10.1007/s002530100624.

    Article  CAS  Google Scholar 

  5. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33. doi:10.1016/0960-8524(95)00122-0.

    Article  CAS  Google Scholar 

  6. Mussatto, S. I., & Roberto, I. C. (2004). Bioresource Technology, 93, 1–10. doi:10.1016/j.biortech.2003.10.005.

    Article  CAS  Google Scholar 

  7. Hahn-Hägėrdal, B., Jeppsson, H., Skoog, K., & Prior, B. A. (1994). Enzyme and Microbial Technology, 16, 933–943. doi:10.1016/0141-0229(94)90002-7.

    Article  Google Scholar 

  8. Millati, R., Edebo, L., & Taherzadeh, M. J. (2004). Enzyme and Microbial Technology, 36, 294–300. doi:10.1016/j.enzmictec.2004.09.007.

    Article  CAS  Google Scholar 

  9. Sanchez, G., Pilcher, L., Roslander, C., Modig, T., Galbe, M., & Linden, G. (2004). Bioresource Technology, 93, 249–256. doi:10.1016/j.biortech.2003.11.003.

    Article  CAS  Google Scholar 

  10. Agbogbo, F. K., & Coward-Kelly, G. (2008). Biotechnology Letters, 30, 1515–1524. doi:10.1007/s10529-008-9728-z.

    Article  CAS  Google Scholar 

  11. Sánchez, S., Bravo, V., Castro, E., Moya, A. J., & Camacho, F. (2002). Journal of Chemical Technology and Biotechnology, 77, 641–648. doi:10.1002/jctb.622.

    Article  CAS  Google Scholar 

  12. Sunitha, K., Lee, J. K., & Oh, T. K. (1999). Bioprocess and Biosystems Engineering, 21, 477–481. doi:10.1007/PL00009086.

    CAS  Google Scholar 

  13. du Preez, J. C. (1994). Enzyme and Microbial Technology, 16, 944–956. doi:10.1016/0141-0229(94)90003-5.

    Article  Google Scholar 

  14. Taniguchi, M., Tohma, T., Itaya, T., & Fujii, M. (1997). Journal of Fermentation and Bioengineering, 83, 364–370. doi:10.1016/S0922-338X(97)80143-2.

    Article  CAS  Google Scholar 

  15. Nigam, J. N. (2001). Journal of Industrial Microbiology and Biotechnology, 26, 145–150. doi:10.1038/sj.jim.7000098.

    Article  CAS  Google Scholar 

  16. Mussatto, S. I., & Roberto, I. C. (2005). Brazilian Archives of Biology and Technology, 48, 497–502. doi:10.1590/S1516-89132005000300020.

    Article  Google Scholar 

  17. Roberto, I. C., Mussatto, S. I., & Rodrigues, R. C. L. B. (2003). Industrial Crops and Products, 17, 171–176. doi:10.1016/S0926-6690(02)00095-X.

    Article  CAS  Google Scholar 

  18. Mussatto, S. I., & Roberto, I. C. (2004). Biotechnology Progress, 20, 134–139. doi:10.1021/bp034207i.

    Article  CAS  Google Scholar 

  19. Diaz, M. J., Ruiz, E., Romero, I., Cara, C., Moya, M., & Castro, E. (2009). World Journal of Microbiology and Biotechnology, 25, 891–899. doi:10.1007/s11274-009-9966-9.

    Article  CAS  Google Scholar 

  20. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Biotechnology Progress, 20, 200–206. doi:10.1021/bp0257978.

    Article  CAS  Google Scholar 

  21. Liu, Z. L., Slininger, P. J., Dien, B. S., Berhow, M. A., Kurtzman, C. P., & Gorsick, S. W. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 345–352. doi:10.1007/s10295-004-0148-3.

    CAS  Google Scholar 

  22. Liu, Z. L., Slininger, P. J., & Gorsick, S. W. (2005). Applied Biochemistry and Biotechnology, 121–124, 451–460. doi:10.1007/978-1-59259-991-2.

    Article  Google Scholar 

  23. Agbogbo, F. K., & Wenger, K. S. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 723–727. doi:10.1007/s10295-007-0247-z.

    Article  CAS  Google Scholar 

  24. du Preez, J. C., Bosch, M., & Prior, B. A. (1986). Enzyme and Microbial Technology, 8, 360–364. doi:10.1016/0141-0229(86)90136-5.

    Article  Google Scholar 

  25. Telli-Okur, M., & Eken-Saraçoglu, N. (2008). Bioresource Technology, 99, 2162–2169. doi:10.1016/j.biortech.2007.05.036.

    Article  CAS  Google Scholar 

  26. Skoog, K., & Hahn-Hagerdahl, B. (1990). Applied and Environmental Microbiology, 56, 3389–3394.

    CAS  Google Scholar 

  27. Klinner, U., Fluthgraf, S., Freese, S., & Passoth, V. (2005). Applied Microbiology and Biotechnology, 67, 247–253. doi:10.1007/s00253-004-1746-8.

    Article  CAS  Google Scholar 

  28. Slininger, P. J., Bothast, R. J., Okos, M. R., & Ladisch, M. R. (1985). Biotechnology Letters, 7, 431–436. doi:10.1007/BF01166218.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from Fapesp (Brazil) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange Inês Mussatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, J.P.A., Mussatto, S.I. & Roberto, I.C. The Influence of Initial Xylose Concentration, Agitation, and Aeration on Ethanol Production by Pichia stipitis from Rice Straw Hemicellulosic Hydrolysate. Appl Biochem Biotechnol 162, 1306–1315 (2010). https://doi.org/10.1007/s12010-009-8867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8867-6

Keywords

Navigation