Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 766–779 | Cite as

Pentavalent Arsenate Reductase Activity in Cytosolic Fractions of Pseudomonas sp., Isolated from Arsenic-Contaminated Sites of Tezpur, Assam

  • Deepti Srivastava
  • Datta Madamwar
  • R. B. SubramanianEmail author
Article

Abstract

Pentavalent arsenate reductase activity was localized and characterized in vitro in the cytosolic fraction of a newly isolated bacterial strain from arsenic-contaminated sites. The bacterium was gram negative, rod-shaped, nonmotile, non-spore-forming, and noncapsulated, and the strain was identified as Pseudomonas sp. DRBS1 following biochemical and molecular approaches. The strain Pseudomonas sp. DRBS1 exhibited enzymatic machinery for reduction of arsenate(V) to arsenite(III). The suspended culture of the bacterium reduced more than 97% of As(V) (40–100 mM) to As(III) in 48 h. The growth rate and total cellular yield decreased in the presence of higher concentration of arsenate. The suspended culture repeatedly reduced 10 mM As(V) within 5 h up to five consecutive inputs. The cell-free extracts reduced 86% of 100 µM As(V) in 40 min. The specific activity of arsenate reductase enzyme in the presence of 100 µM arsenate is 6.68 µmol/min per milligram protein. The arsenate reductase activity is maximum at 30 °C and at pH 5.2. The arsenate reductase activity increased in the presence of electron donors like citrate, glucose, and galactose and metal ions like Cd+2, Cu+2, Ca+2, and Fe+2. Selenate as an electron donor also supports the growth of strain DRBS1 and significantly increased the arsenate reduction.

Keywords

Arsenate reductase Pseudomonas sp. Cell-free extracts Selenate Arsenite 

References

  1. 1.
    Tamaki, S., & Frankenberger, W. T. (1992). Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology, 124, 79–110.Google Scholar
  2. 2.
    Cullen, R. W., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.CrossRefGoogle Scholar
  3. 3.
    Nriagu, J. O. (1990). Global metal pollution. Environment, 32(7–11), 28–33.Google Scholar
  4. 4.
    National Research Council. (1977). Arsenic. Washington, DC: National Academy of Sciences.Google Scholar
  5. 5.
    Jackson, C. R., Jackson, E. F., Dugas, S. L., Gamble, K., & Williams, S. E. (2003). Microbial transformations of arsenite and arsenate in natural environments. Recent Research Developments in Microbiology, 7, 103–118.Google Scholar
  6. 6.
    Clausen, C. A. (2000). Isolating metal-tolerant bacteria capable of removing copper, chromium and arsenic from treated wood. Waste Management Research, 18, 264–268.Google Scholar
  7. 7.
    Cervantes, C., Ji, G., Ramirez, J. L., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 15, 355–367.CrossRefGoogle Scholar
  8. 8.
    Dowdle, P. R., Laverman, A. M., & Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic (V) to arsenic (III) in anoxic sediments. Applied and Environmental Microbiology, 62, 1664–1669.Google Scholar
  9. 9.
    Oremland, R. S., & Stoltz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944.CrossRefGoogle Scholar
  10. 10.
    Silver, S. (1998). Genes for all metals—a bacterial view of the periodic table. Journal of Industrial Microbiology & Biotechnology, 20, 1–12.CrossRefGoogle Scholar
  11. 11.
    Xu, C., Zhou, T., Kuroda, M., & Rosen, B. P. (1998). Metalloid resistance mechanisms in prokaryotes. Journal of Biochemistry, 123, 16–23.Google Scholar
  12. 12.
    Patel, P. C., Goulhen, F., Boothman, C., Gault, A. G., et al. (2007). Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Archives of Microbiology, 187(3), 171–183.CrossRefGoogle Scholar
  13. 13.
    Mateos, L. M., Ordonez, E., Letek, M., & Gil, J. A. (2006). Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. International Microbiology, 9, 207–215.Google Scholar
  14. 14.
    Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Letters, 529, 86–92.CrossRefGoogle Scholar
  15. 15.
    Mok, M. W., & Wai, C. M. (1994). Mobilization of arsenic in contaminated river waters. In J. O. Nriagu (Ed.), Arsenic in the environment. Part I: cycling and characterization. New York: Wiley.Google Scholar
  16. 16.
    Garcia-Manyes, S., Jimenez, G., Padro, A., Rubio, R., & Rauret, G. (2002). Arsenic speciation in contaminated soils. Talanta, 58, 97–109.CrossRefGoogle Scholar
  17. 17.
    Bissen, M., & Frimmet, H. F. (2000). Speciation of As (III), As (V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS. Fresenius’ Journal of Analytical Chemistry, 367, 51–55.CrossRefGoogle Scholar
  18. 18.
    Lovley, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8, 285–289.CrossRefGoogle Scholar
  19. 19.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., et al. (1997). Current protocols in molecular biology, unit 24. New York: Wiley.Google Scholar
  20. 20.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
  21. 21.
    Xia, X., & Xie, Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity, 92, 371–373.CrossRefGoogle Scholar
  22. 22.
    Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.CrossRefGoogle Scholar
  23. 23.
    Johnson, D. L., & Pilson, M. E. Q. (1972). Spectrophotometric determination of arsenite, arsenate and phosphate in natural waters. Analytica Chimica Acta, 58, 289–299.CrossRefGoogle Scholar
  24. 24.
    Pirt, S. J. (1975). Principles of microbe and cell cultivation. Oxford: Blackwell.Google Scholar
  25. 25.
    Lowry, O. H., Rosenberg, N. J., Farr, A. L., & Randall, R. J. (1951). Estimation of protein by Lowry’s method. Journal of Biological Chemistry, 193, 265.Google Scholar
  26. 26.
    Anderson, C. R., & Cook, G. M. (2004). Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites of New Zealand. Current Microbiology, 48, 341–347.CrossRefGoogle Scholar
  27. 27.
    Jackson, C. R., Harrison, K. G., & Dugas, S. L. (2005). Enumeration and characterization of culturable arsenate resistant bacteria in a large estuary. Systematic and Applied Microbiology, 28, 727–734.CrossRefGoogle Scholar
  28. 28.
    Turner, A. W. (1954). Bacterial oxidation of arsenite. Description of bacteria isolated from arsenical cattle-dipping fluids. Australian Journal of Biological Sciences, 7, 452–478.Google Scholar
  29. 29.
    Abdrashitova, S. A., Mynbaeva, B. N., & Ilyaletdinov, A. N. (1981). Oxidation of arsenic by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus. Mikrobiologiya, 50, 41–45.Google Scholar
  30. 30.
    Macur, R. E., Jackson, C. R., Botero, L. M., McDermott, T. R., & Inskeep, W. P. (2004). Bacteria populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environmental Science and Technology, 38, 104–111.CrossRefGoogle Scholar
  31. 31.
    Ilyaletdinov, A. N., & Abdrashitova, S. A. (1981). Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans. Mikrobiologiya, 50, 197–204.Google Scholar
  32. 32.
    Joshi, D. N., Patel, J. S., Flora, S. J. S., & Kalia, K. (2008). Arsenic accumulation by Pseudomonas stutzeri and its response to some thiol chelators. Environmental Health and Preventive Medicine, 13(5), 257–263.CrossRefGoogle Scholar
  33. 33.
    Rathinasabapathi, B., Raman, S. B., Kerthlis, G., & Ma, L. (2006). Arsenic resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vita L.) reduces arsenate to arsenite. Canadian Journal of Microbiology, 52(7), 695–700.CrossRefGoogle Scholar
  34. 34.
    Salam, M. A., Hossain, M. S., Ali, M. E., Asad, M. A., & Ali, M. H. (2009). Isolation and characterization of arsenic resistant bacteria from different environment in South-West region of Bangladesh. Research Journal of Environment Science, 3(1), 110–115.CrossRefGoogle Scholar
  35. 35.
    Drewniak, L., Styczek, A., Majder-Lopatka, M., & Sklodowska, A. (2008). Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environmental Pollution, 156, 1069–1074.CrossRefGoogle Scholar
  36. 36.
    Drewniak, L., Styczek, A., & Sklodowska, A. (2007). Arsenic hypertolerant bacteria isolated from gold mine rocks biofilms. Advanced Materials Research, 576, 20–21.Google Scholar
  37. 37.
    Matlakowska, R., Hallberg, K. B., & Sklodowska, A. (2007). Isolation and characterization of microorganisms from copper bearing black shale of Lubin copper mine (Poland). Advanced Materials Research, 580, 20–21.Google Scholar
  38. 38.
    Matlakowska, R., Drewniak, L., & Sklodowska, A. (2008). Arsenic-hypertolerant pseudomonads isolated from ancient gold and copper-bearing black shale deposits. Geomicrobiology Journal, 25, 357–362.CrossRefGoogle Scholar
  39. 39.
    Yamamura, S., Ike, M., & Fujita, M. (2003). Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. Strain SF-1. Journal of Bioscience and Bioengineering, 96(5), 454–460.Google Scholar
  40. 40.
    Fujita, M., Ike, M., Nishimoto, S., Takahashi, K., & Kashiwa, M. (1997). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Fermentation and Bioengineering, 83, 517–522.CrossRefGoogle Scholar
  41. 41.
    Switzer Blum, J., Burns Bindi, A., Buzzelli, J., Stolz, J. F., & Oremland, R. S. (1998). Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Archives of Microbiology, 171, 19–30.CrossRefGoogle Scholar
  42. 42.
    Stolz, J. F., Ellis, D. J., Switzer Blum, J., Ahmann, D., Lovley, D. R., & Oremland, R. S. (1999). Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. International Journal of Systematic Bacteriology, 49, 1177–1180.CrossRefGoogle Scholar
  43. 43.
    Switzer Blum, J., Stolz, J. F., Oren, A., & Oremland, R. S. (2001). Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from deep sea sediments that respires selenate. Archives of Microbiology, 175, 208–219.CrossRefGoogle Scholar
  44. 44.
    von Wintzingerode, F., Gobel, U. B., Siddiqui, R. A., Rosick, U., Schumann, P., Fruhling, A., et al. (2001). Salana multivorans gen. nov., sp. nov., a novel actinobacterium isolated from an anaerobic bioreactor and capable of selenate reduction. International Journal of Systematic and Evolutionary Microbiology, 51, 1653–1661.Google Scholar
  45. 45.
    Zhang, Y., Siddique, T., Wang, J., & Frankenberger, W. T., Jr. (2004). Selenate reduction in river water by Citrobacter freundii isolated from a selenium-contaminated sediment. Journal of Agricultural and Food Chemistry, 52, 1594–1600.CrossRefGoogle Scholar
  46. 46.
    Prithiviraj Singh, S., Mishra, S. K., & Mahadevan, A. (2001). Functional analysis of chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Molecular Biology Reports, 28(2), 63–72.CrossRefGoogle Scholar
  47. 47.
    Sizova, O. I., Kochetkov, V. V., & Boronin, A. M. (2006). The arsenic-phytoremediation potential of genetically modified Pseudomonas sp. In J. L. Morel, G. Echevarria & N. Goncharova (Eds.), Phytoremediation of metal contaminated soil (Vol. 68, pp. 327–334). Heidelberg: Springer.CrossRefGoogle Scholar
  48. 48.
    Nemeti, B., & Gregus, Z. (2002). Reduction of arsenate to arsenite in hepatic cytosol. Toxicological Sciences, 70, 4–12.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Deepti Srivastava
    • 1
  • Datta Madamwar
    • 1
  • R. B. Subramanian
    • 1
    Email author
  1. 1.BRD School of BiosciencesSardar Patel Maidan, Sardar Patel UniversityGujaratIndia

Personalised recommendations