Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 698–706 | Cite as

Antilisterial Activity of a Broad-Spectrum Bacteriocin, Enterocin LR/6 from Enterococcus faecium LR/6

  • Manoj Kumar
  • Sheela SrivastavaEmail author


Enterocin LR/6, a purified bacteriocin, exhibited broad inhibitory spectrum both against related as well as some food-borne pathogens such as Listeria monocytogenes, Yersinia enterocolitica, Aeromonas sp., Shigella sp., and Bacillus licheniformis. In this investigation, we have focused on L. monocytogenes as the target organism, as it is not only an important pathogen but can also survive over a wide range of environmental conditions such as refrigeration temperature, low pH, and high-salt concentration. This allows the pathogen to overcome many food preservation and safety barriers and poses a potential risk to human health. The enterocin LR/6 showed a bactericidal action against L. monocytogenes and completely inhibited the growth on agar plates, supplemented with 200 AU/ml of enterocin LR/6. The effectiveness of enterocin LR/6 in completely killing a population of acid-adapted (pH 5.2, 2 h) L. monocytogenes exposed to different temperatures (437 °C), pH (2.5–8.0), and osmotic (up to 30% NaCl) stress is reported here. This paper focuses on the key issue of killing of the acid-adapted L. monocytogenes cells under adverse environmental conditions.


Acid adaptation Enterocin LR/6 Inhibitory spectrum Listeria monocytogenes 



This work was financially supported by the Council of Scientific and Industrial Research and Department of Biotechnology, India. The facilities provided to the Department of Genetics, by the University Grant Commission under SAP and by the Department of Science and Technology, Government of India under FIST program are thankfully acknowledged. MK was supported by a UGC fellowship.


  1. 1.
    Chen, H., & Hoover, D. G. (2003). Comprehensive Review of Food Science and Food Safety, 2, 82–100.Google Scholar
  2. 2.
    Cotter, P. D., Hill, C., & Ross, R. P. (2005). Nature Reviews Microbiology, 3, 777–788.CrossRefGoogle Scholar
  3. 3.
    Klaenhammer, T. R. (1993). FEMS Microbiology Reviews, 12, 39–86.Google Scholar
  4. 4.
    Mantovani, H. C., & Russell, J. B. (2003). International Journal of Food Microbiology, 89, 77–83.CrossRefGoogle Scholar
  5. 5.
    Hequet, A., Laffitte, V., Simon, L., De Sousa-Caetano, D., Thomas, C., Fremaux, C., et al. (2007). International Journal of Food Microbiology, 113, 67–74.CrossRefGoogle Scholar
  6. 6.
    Rocourt, J., & Cossart, P. (1997). In M. P. Doyle, L. R. Buechat & T. J. Montville (Eds.), Food microbiology fundamentals and frontiers. Washington: American Society for Microbiology (ASM) Press.Google Scholar
  7. 7.
    Phan-Thanh, L., Mahouin, F., & Alige, S. (2000). International Journal of Food Microbiology, 55, 121–126.CrossRefGoogle Scholar
  8. 8.
    Gahan, C. G., O’Driscoll, B., & Hill, C. (1996). Applied and Environmental Microbiology, 62, 3128–3132.Google Scholar
  9. 9.
    Faleiro, M. L., Andrew, P. W., & Power, D. (2003). International Journal of Food Microbiology, 84, 207–216.Google Scholar
  10. 10.
    Kumar, M., Tiwari, S. K., & Srivastava, S. (2009). Applied Biochemistry and Biotechnology, doi: 10.1007/s12010-009-8586-z.Google Scholar
  11. 11.
    Tiwari, S. K., & Srivastava, S. (2008). Food Biotechnology, 22, 64–77.CrossRefGoogle Scholar
  12. 12.
    Jennes, W., Dicks, L. M. T., & Verwoerd, D. J. (2000). Journal of Applied Microbiology, 88, 349–357.CrossRefGoogle Scholar
  13. 13.
    Floriano, B., Ruiz-Barba, J. L., & Jimenez-Diaz, R. (1998). Applied and Environmental Microbiology, 64, 4883–4890.Google Scholar
  14. 14.
    Lucas, R., Grande, M. J., Abriouel, H., Maqueda, M., Ben Omar, N., Valdivia, E., et al. (2006). Food and Chemical Toxicology, 44, 1774–1781.CrossRefGoogle Scholar
  15. 15.
    Allende, A., Martinez, B., Selma, V., Gil, M. I., Suarez, J. E., & Rodriguez, A. (2007). Food Microbiology, 24, 759–766.CrossRefGoogle Scholar
  16. 16.
    Moreno, M. R. F., Callewaert, R., Devreese, B., Van Beeumen, J., & De Vuyst, L. (2003). Journal of Applied Microbiology, 94, 214–229.CrossRefGoogle Scholar
  17. 17.
    Torodov, S. D., & Dicks, L. M. T. (2005). Enzyme and Microbial Technology, 36, 318–326.CrossRefGoogle Scholar
  18. 18.
    Van Schaik, W., Gahan, C. G. M., & Hill, C. (1999). Journal of Food Protection, 62, 536–539.Google Scholar
  19. 19.
    Jydegaard, A. M., Gravesen, A., & Knochel, S. (2000). Letters in Applied Microbiology, 31, 68–72.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations