Skip to main content

Advertisement

Log in

Extraction and Characterization of Chitin, Chitosan, and Protein Hydrolysates Prepared from Shrimp Waste by Treatment with Crude Protease from Bacillus cereus SV1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chitin is a polysaccharide found in abundance in the shell of crustaceans. In this study, the protease from Bacillus cereus SV1 was applied for chitin extraction from shrimp waste material of Metapenaeus monoceros. A high level of deproteinization 88.8% ± 0.4 was recorded with an E/S ratio of 20. The demineralization was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01%. 13C CP/MAS-NMR spectral analysis of chitin prepared by the enzymatic deproteinization of shrimp wastes was found to be similar to that obtained by alkaline treatment and to the commercial α-chitin. The degree of N-acetylation, calculated from the spectrum, was 89.5%. Chitin obtained by treatment with crude protease from B. cereus was converted to chitosan by N-deacetylation, and the antibacterial activity of chitosan solution against different bacteria was investigated. Results showed that chitosan solution at 50 mg/mL markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested. Furthermore, the antioxidant potential of the protein hydrolysates obtained during enzymatic isolation of chitin was evaluated using various in vitro assays. All the samples exerted remarkable antioxidant activities. These results suggest that enzymatic deproteinization of the shrimp shell wastes, using B. cereus SV1 protease, could be applicable to the chitin production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Bioresource Technology, 99, 1359–1367.

    Article  CAS  Google Scholar 

  2. Rinaudo, M. (2006). Progress in Polymer Science, 31, 603–632.

    Article  CAS  Google Scholar 

  3. Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2006). Carbohydrate Polymers, 64, 98–103.

    Article  CAS  Google Scholar 

  4. Knorr, D. (1991). Food Technology, 45, 114–122.

    CAS  Google Scholar 

  5. Yen, M. T. & Mau, J. L. (2006). Fungal Science, 21, 1–11.

    Google Scholar 

  6. Yen, M. T., Yang, J. H., & Mau, J. L. Carbohydrate Polymers, 75, 15–21.

  7. Oh, K. T., Kima, Y. J., Nguyen, V. N., Jung, W. J., & Park, R. D. (2007). Process Biochemistry, 42, 1069–1074.

    Article  CAS  Google Scholar 

  8. Bhaskar, N., Suresh, P. V., Sakhare, P. Z., & Sachindra, N. M. (2007). Enzyme and Microbial Technology, 40, 1427–1434.

    Article  CAS  Google Scholar 

  9. Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Carbohydrate Research, 342, 2423–2429.

    Article  CAS  Google Scholar 

  10. Synowiecki, J. & Al-Khateeb, N. A. A. Q. (2008). Food Chemistry, 68, 147–152.

    Article  Google Scholar 

  11. Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., & Park, R. D. (2008). Carbohydrate Polymers, 74, 504–508.

    Article  CAS  Google Scholar 

  12. Roberts, G. A. F. (1992). In G. A. E. Roberts (Ed.), Chitin chemistry (pp. 85–91). London: Macmillan.

    Google Scholar 

  13. Madihally, S. V., & Matthew, H. W. T. (1999). Biomaterials, 20, 1133–1142.

    Article  CAS  Google Scholar 

  14. Li, B., Wang, X., Chen, R., Huangfu, W., & Xie, G. (2008). Carbohydrate Polymers, 72, 287–292.

    Article  CAS  Google Scholar 

  15. Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., et al. (2008). Biotechnology Advances, 26, 1–21.

    Article  CAS  Google Scholar 

  16. Chevrier, A., Hoemann, C. D., Sun, J., & Buschmann, M. D. (2007). Osteoarthritis and Cartilage, 15, 316–327.

    Article  CAS  Google Scholar 

  17. Li, L., & Hsieh, Y. L. (2006). Carbohydrate Research, 341, 374–381.

    Article  CAS  Google Scholar 

  18. Kanatt, S. R., Chander, R., & Sharma, A. (2008). Food Chemistry, 107, 845–852.

    Article  CAS  Google Scholar 

  19. Harish Prashanth, K. V., & Tharanathan, R. N. (2007). Trends in Food Science and Technology, 18, 117–131.

    Article  Google Scholar 

  20. Fujimoto, T., Tsuchiya, Y., Terao, M., Nakamura, K., & Yamamoto, M. (2006). International Journal of Food Microbiology, 112, 96–101.

    Article  CAS  Google Scholar 

  21. Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., et al. (2006). Carbohydrate Polymers, 64, 60–65.

    Article  CAS  Google Scholar 

  22. Du, Y., Zhao, Y., Dai, S., & Yang, B. (2009). Innovative Food Science and Emerging Technologies, 10, 103–107.

    Article  CAS  Google Scholar 

  23. Yun, Y. S., Kim, K. S., & Lee, Y. N. (1999). Journal of Chitin and Chitosan, 4, 8–14.

    Google Scholar 

  24. Park, P. J., Je, J. Y., Byun, H. G., Moon, S. H., & Kim, S. K. (2004). Journal of Microbiology and Biotechnology, 14, 317–323.

    CAS  Google Scholar 

  25. Park, P. J., Kim, S. K., & Lee, H. K. (2002). Journal of Chitin and Chitosan, 7, 225–230.

    Google Scholar 

  26. Chung, Y. C., Su, Y. P., Chen, C. C., Jia, G., Wang, H. L., Wu, J. C. G., et al. (2004). Acta Pharmacologica Sinica, 27, 932–936.

    Google Scholar 

  27. Gerasimenko, D. V., Avdienko, I. D., Bannikova, G. E., Zueva, O. Y., & Varlamov, V. P. (2004). Applied Biochemistry and Microbiology, 40, 253–257.

    Article  CAS  Google Scholar 

  28. Park, P. J., Lee, H. K., & Kim, S. K. (2004). Journal of Microbiology and Biotechnology, 14, 41–47.

    CAS  Google Scholar 

  29. Jellouli, K., Bayoudh, A., Manni, L., Agrebi, R., & Nasri, M. (2008). Applied Microbiology and Biotechnology, 79, 989–999.

    Article  CAS  Google Scholar 

  30. Manni, L., Jellouli, K., Agrebi, R., Bayoudh, A., & Nasri, M. (2008). Process Biochemistry, 43, 522–530.

    Article  CAS  Google Scholar 

  31. Kembhavi, A. A., Kulkarni, A., & Pant, A. A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.

    Article  CAS  Google Scholar 

  32. AOAC. (1995). Official methods of analysis (16th ed.). Washington: Association of Official Analytic Chemist.

    Google Scholar 

  33. Rao, M. S., Munoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.

    Article  CAS  Google Scholar 

  34. Ottøy, M. H., Varum, K. M., & Smidsrød, O. (1996). Carbohydrate Polymers, 19, 17–24.

    Article  Google Scholar 

  35. Bersuder, P., Hole, M., & Smith, G. (1998). Journal of the American Oil Chemists' Society, 75, 181–187.

    Article  CAS  Google Scholar 

  36. Yildirim, A., Mavi, A., & Kara, A. A. (2001). Journal of Agricultural and Food Chemistry, 49, 4083–4089.

    Article  CAS  Google Scholar 

  37. Koleva, I. I., Van Beek, T. A., Linssen, J. P. H., De Groot, A., & Evstatieva, L. N. (2002). Phytochemistry Analysis, 13, 8–17.

    Article  CAS  Google Scholar 

  38. Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Bioresource Technology, 100, 3366–3373.

    Article  CAS  Google Scholar 

  39. Fakhfakh, N., Hmidet, N., Haddar, A., & Nasri, M. (2009). Applied Biochemistry and Biotechnology, (In press)

  40. Berghe, D. V. A., & Vlietinck, A. J. (1991). Screening methods for antibacterial and antiviral agents from higher plants. Methods in Plant Biochemistry vol. 6, Academic Press, London, pp. 47–69.

  41. Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A. et al. (2009). Applied Biochemistry and Biotechnology, (In press) (doi: 10.1007/s12010-009-8703-z).

  42. Tolaimate, A., Desbrieres, J., Rhazi, M., & Alagui, A. (2003). Polymer, 44, 7939–7952.

    Article  CAS  Google Scholar 

  43. Percot, A., Viton, C., & Domard, A. (2003). Biomacromolecules, 4, 12–18.

    Article  CAS  Google Scholar 

  44. Chandumpai, A., Singhpibulporn, N., Faroongsarng, D., & Sornprasit, P. (2004). Carbohydrate Polymers, 58, 467–474.

    Article  CAS  Google Scholar 

  45. Canizares, E., Gonzalez José, A., Hau, L., & Osorno, H. (2002). Alimentaria, 331, 31–34.

    Google Scholar 

  46. Fanimo, A. O., Oduguwa, O. O., Onifade, A. O., & Olutunde, T. O. (2000). Bioresource Technology, 72, 185–188.

    Article  CAS  Google Scholar 

  47. Rødde, R. H., Einbu, A., & Varum, K. M. (2008). Carbohydrate Polymers, 71, 388–393.

    Article  Google Scholar 

  48. Cardenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Journal of Applied Polymer Science, 93, 1876–1885.

    Article  CAS  Google Scholar 

  49. Focher, B., Beltrame, P. L., Naggi, A., & Torri, G. (1990). Carbohydrate Polymers, 12, 405–418.

    Article  CAS  Google Scholar 

  50. Cortizo, M. S., Berghoff, C. F., & Alessandrini, J. L. (2008). Carbohydrate Polymers, 74, 10–15.

    Article  Google Scholar 

  51. Heux, L., Brugnerotto, J., Desbrières, J., Versali, M. F., & Rinaudo, M. (2000). Biomacromolecules, 1, 746–751.

    Article  CAS  Google Scholar 

  52. Lavall, R. L., Assis, O. B. G., & Campana-Filho, S. P. (2007). Bioresource Technology, 98, 2465–2472.

    Article  CAS  Google Scholar 

  53. Chung, Y. C. & Chen, C. Y. (2008). Bioresource Technology, 99, 2806–2814.

    Article  CAS  Google Scholar 

  54. Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). International Journal of Food Microbiology, 71, 235–244.

    Article  CAS  Google Scholar 

  55. Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Food Microbiology, 21, 703–714.

    Article  CAS  Google Scholar 

  56. No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). International Journal of Food Microbiology, 74, 65–72.

    Article  CAS  Google Scholar 

  57. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2008). Food Chemistry, 114, 1198–1205.

    Article  Google Scholar 

  58. Binsan, W., Benjakul, S., Visessanguan, W., Roytrakul, S., Tanaka, M., & Kishimura, H. (2008). Food Chemistry, 106, 185–193.

    Article  CAS  Google Scholar 

  59. Sarkar, A., Bishayee, A., & Chatterjee, M. (1995). Cancer Biochemistry Biophysics, 15, 111–125.

    CAS  Google Scholar 

  60. Kumazawa, S., Taniguchi, M., Suzuki, Y., Shimura, M., Kwon, M. S., & Nakayama, T. (2002). Journal of Agricultural and Food Chemistry, 50, 373–377.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ministry of Higher Education, Scientific Research and Technology-Tunisia. The authors express their thanks to Hajji Rachid (Laboratoire de Chimie Industrielle II, Ecole Nationale d'Ingénieurs de Sfax) for the solid-state NMR analysis. The authors would like to thank Mr. Hajji Ayedi from the Faculty of Letters and Human Sciences of Kairouan for his help with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Nasri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manni, L., Ghorbel-Bellaaj, O., Jellouli, K. et al. Extraction and Characterization of Chitin, Chitosan, and Protein Hydrolysates Prepared from Shrimp Waste by Treatment with Crude Protease from Bacillus cereus SV1. Appl Biochem Biotechnol 162, 345–357 (2010). https://doi.org/10.1007/s12010-009-8846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8846-y

Keywords

Navigation