Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 795–804 | Cite as

Synthesis of Coenzyme Q10 and β-carotene by Yeasts Isolated from Antarctic Soil and Lichen in Response to Ultraviolet and Visible Radiations

  • Stela DimitrovaEmail author
  • Kostantsa Pavlova
  • Ludmil Lukanov
  • Plamen Zagorchev


The effect of different doses of visible (Vis), ultraviolet-А (UVA), and mixed light (UVA + Vis) upon coenzyme Q10 (CoQ10) and β-carotene synthesis and biomass yield by the Sporobolomyces salmonicolor AL1, Cryptococcus albidus AS55, Cryptococcus laurentii AS56, and C. laurentii AS58 strains isolated from Antarctic samples was investigated. The β-carotene concentration in the red strain biomass increased by 52% under irradiation with 11 J/cm2 Vis, and the CoQ10 concentration rose by 37% in relation to the control quantity obtained through dark cultivation. Under irradiation with 6 J/cm2 UVA, the S. salmonicolor AL1 strain synthesized 15% more β-carotene; C. albidus AS55, 22%; C. laurentii AS56, 44%; and C. laurentii AS58, 35% in relation to the control quantity. Irradiation with a low UVА + Vis dose significantly stimulated β-carotene biosynthesis by the strains of the Cryptococcus genus (87%, 138%, and 100%), whereas S. salmonicolor AL1 increased the β-carotene content to a smaller degree (55%). Higher doses of all three irradiation types inhibited β-carotene accumulation. Vis suppressed CoQ10 biosynthesis in the Cryptococcus strains, whereas UVА and UVА + Vis inhibited it in all four strains. The S. salmonicolor AL1 strain pre-treated with 0.02 J/cm2 UVA synthesized twice as much CoQ10 and β-carotene when cultivated in the presence of Vis light in an 11-J/cm2 dose.


S. salmonicolor AL1 C. albidus AS55 C. laurentii AS56 C. laurentii AS58 β-carotene Coenzyme Q10 UV Vis 



The study was supported by Grant B-1615 from the National Fund Scientific Investigation.


  1. 1.
    Tsimako, M., Guffogg, S., Thomas-Hall, S., & Watson, K. (2002). Resistance to UVB radiation in Antarctic yeasts. Redox Report, 7, 312–314.CrossRefGoogle Scholar
  2. 2.
    Libkind, D., Pérez, P., Sommaruga, R., Diéguez, M., Ferraro, M., Brizzio, S., et al. (2004). Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochemical & Photobiological Sciences, 3, 281–286.CrossRefGoogle Scholar
  3. 3.
    Karentz, D. (1994). Ultraviolet tolerance mechanisms in Antarctic marine organisms. In C. Weler & P. Penhale (Eds.), UV radiation in Antarctica: Measurement and biological effects (pp. 92–110). Washington: American Geogphysical Union.Google Scholar
  4. 4.
    Cockell, C., & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Review, 74, 311–345.CrossRefGoogle Scholar
  5. 5.
    Krinsky, N. (1979). Carotenoid protection against oxidation. Pure and Applied Chemistry, 51, 649–660.CrossRefGoogle Scholar
  6. 6.
    Phander, H. (1992). Carotenoids: an overview. Methods in Enzymology, 213, 3–13.CrossRefGoogle Scholar
  7. 7.
    Edge, R., McGarvey, D., & Truscott, T. (1997). The carotenoids as anti-oxidants—a review. Journal of Photochemistry and Photobiology B: Biology, 41, 189–200.CrossRefGoogle Scholar
  8. 8.
    Rock, C. (1997). Carotenoids: biology and treatment. Pharmacology and Therapeutics, 75, 185–197.CrossRefGoogle Scholar
  9. 9.
    Bhosale, P., & Gadre, R. (2001). Production of β-carotene by a mutant of Rhodotorula glutinis. Applied Microbiology and Biotechnology, 55, 423–427.CrossRefGoogle Scholar
  10. 10.
    Buzzini, P., & Martini, A. (1999). Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresource Technology, 71, 41–44.CrossRefGoogle Scholar
  11. 11.
    Yurkov, M., Vustin, M., Tyaglov, B., Maksimova, I., & Sineokiy, S. (2008). Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology, 77, 1–6.Google Scholar
  12. 12.
    Turunen, M., Olsson, J., & Dallner, G. (2004). Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta, 1660, 171–199.CrossRefGoogle Scholar
  13. 13.
    Vinson, J., & Anamandla, S. (2005). Comparative topical absorption and antioxidant effectiveness of two forms of Coenzyme Q10 after a single dose and after long-term supplementation in the skin of young and middle-aged subjects. IFSCC Magazine, 8, 287–292.Google Scholar
  14. 14.
    Choi, J., Ryu, Y., & Seo, J. (2005). Biotechnological production and applications of coenzyme Q10. Applied Microbiology and Biotechnology, 68, 9–15.CrossRefGoogle Scholar
  15. 15.
    Jap Pat (2003). No WO 056024.Google Scholar
  16. 16.
    Dimitrova, S., Pavlova, K., Lukanov, L., & Savova, I. (2008). Chemical composition of lipids and other lipophilic compounds from Antarctic yeast strains. Comptes Rendus de l'Academie Bulgare des Sciences, 61, 481–486.Google Scholar
  17. 17.
    Gimeno, E., Castellote, A., Lamuela-Raventós, R., de la Torre-Boronat, M., & López-Sabater, M. (2001). Rapid high-performance liquid chromatographic method for the simultaneous determination of retinol, α-tocopherol and β-carotene in human plasma and low-density lipoproteins. Journal of Chromatography B, 758, 315–322.CrossRefGoogle Scholar
  18. 18.
    Vazquez, М. (2001). Effect of the light on carotenoid profiles of Xanthophyllomyces dendrorhous strains (formerly Phaffia rhodozyma). Food Technology and Biotechnology, 39, 23–128.Google Scholar
  19. 19.
    Sakaki, H., Nakanishi, T., Tada, A., Miki, W., & Komemushi, S. (2001). Activation of torularhodin production by Rhodotormla glutinis using weak white light irradiation. Journal of Bioscience and Bioengineering, 92, 294–297.CrossRefGoogle Scholar
  20. 20.
    Bhosale, P. (2004). Environmental and cultural stimulants in the production of carotenoids from microorganisms. Applied Microbiology and Biotechnology, 63, 351–361.CrossRefGoogle Scholar
  21. 21.
    Libkind, D., Diéguez, M., Moline, M., Perez, P., Zagarese, H., & van Broock, M. (2006). Symposium-in-print: UV effects on aquatic and coastal ecosystems occurrence of photoprotective compounds in yeasts from freshwater ecosystems of Northwestern Patagonia (Argentina). Photochemistry and Photobiology, 82, 972–980.CrossRefGoogle Scholar
  22. 22.
    Schlegel, H. G. (1985). Allgemeine Mikrobiologie. Stuttgart: Georg Thieme Verlag.Google Scholar
  23. 23.
    Kao, Y., Saxena, C., Wang, L., Sancar, A., & Zhong, D. (2007). Femtochemistry in enzyme catalysis: DNA photolyase. Cell Biochemistry and Biophysics, 48, 32–44.CrossRefGoogle Scholar
  24. 24.
    Tosi, S., Onofri, S., Brusoni, M., Zucconi, L., & Vishniac, H. (2005). Response of Antarctic soil fungi assemblages to experimental warming and reduction of UV radiation. Polar Biology, 28, 470–482.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Stela Dimitrova
    • 1
    Email author
  • Kostantsa Pavlova
    • 3
  • Ludmil Lukanov
    • 1
  • Plamen Zagorchev
    • 2
  1. 1.Department of Chemistry and BiochemistryMedical UniversityPlovdivBulgaria
  2. 2.Department of Physics and BiophysicsMedical UniversityPlovdivBulgaria
  3. 3.Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria

Personalised recommendations