Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 733–743 | Cite as

Purification and Characterization of an Organic Solvent-Tolerant Lipase from Pseudomonas aeruginosa CS-2

  • Ren PengEmail author
  • Jinping Lin
  • Dongzhi WeiEmail author


An extracellular lipase secreted by Pseudomonas aeruginosa CS-2 was purified to homogeneity about 25.5-fold with an overall yield of 45.5%. The molecular mass of the lipase was estimated to be 33.9 kDa by SDS-PAGE and 36 kDa by gel filtration. The optimum temperature and pH were 50 °C and 8.0. The lipase was found to be stable at pH 4–10 and below 50 °C. Its hydrolytic activity was highest against p-nitrophenyl palmitate (p-NPP) among p-nitrophenyl esters of fatty acids with various chain lengths. The lipase was activated in the presence of Ca2+, while it was inactivated by other metal ions more or less. EDTA significantly reduced the lipase activity, indicating the lipase was a metalloenzyme. Gum Arabic and polyvinyl alcohol 124 enhanced lipase activity but Tween-20, Tween-80, and hexadecyltrimethyl ammonium bromide strongly inhibited the lipase. It exhibited stability in some organic solvents. The lipase was activated in the presence of acetonitrile. Conversely, it was drastically inactivated by methanol and ethanol.


Organic solvent-tolerant lipase Pseudomonas aeruginosa CS-2 



The financial support from the Ministry of Science and Technology of the People’s Republic of China is thankfully acknowledged (Project ID: 2006AA020203).


  1. 1.
    Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251.CrossRefGoogle Scholar
  2. 2.
    Serdakowsli, A. L. & Dordick, J. S. (2008). Trends in Biotechnology, 26, 48–54.CrossRefGoogle Scholar
  3. 3.
    Sellek, G. A., & Chaudhuri, J. B. (1999). Enzyme and Microbial Technology, 25, 471–482.CrossRefGoogle Scholar
  4. 4.
    Ogino, H., Miyamoto, K., & Ishikawa, H. (1994). Applied and Environmental Microbiology, 60, 3884–3886.Google Scholar
  5. 5.
    Rahaman, R. N. Z. R. A., Baharum, S. N., Salleh, A. B., & Basri, M. (2006). Journal of Microbiology, 44, 583–590.Google Scholar
  6. 6.
    Hun, C. J., Rahaman, R. N. Z. R. A., Salleh, A. B., & Basri, M. (2003). Biochemical Engineering Journal, 15, 147–157.CrossRefGoogle Scholar
  7. 7.
    Gupta, R., & Khare, S. K. (2006). Bioresource Technology, 97, 1788–1793.CrossRefGoogle Scholar
  8. 8.
    Laemmli, U. K. (1970). Nature, 228, 680–685.CrossRefGoogle Scholar
  9. 9.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  10. 10.
    Partridge, J., Halling, P. J., & Moore, B. D. (1998). Chemical Communications, 7, 841–842.CrossRefGoogle Scholar
  11. 11.
    Gaur, R., Gupta, A., & Khare, S. K. (2008). Process Biochemistry, 43, 1040–1046.CrossRefGoogle Scholar
  12. 12.
    Rahaman, R. N. Z. R. A., Baharum, S. N., Basri, M., & Salleh, A. B. (2005). Analytical Biochemistry, 341, 267–274.CrossRefGoogle Scholar
  13. 13.
    Ogino, H., Nakagawa, S., Shinya, K., Fujimura, N., Yasuda, M., & Ishikawa, H. (2000). Journal of Bioscience and Bioengineering, 89, 451–457.CrossRefGoogle Scholar
  14. 14.
    Zhao, L. L., Xu, J. H., Zhao, J., Pan, J., & Wang, Z. L. (2008). Process Biochemistry, 43, 626–633.CrossRefGoogle Scholar
  15. 15.
    Pleiss, J., Fischer, M., & Schmid, R. D. (1998). Chemistry and Physics of Lipids, 93, 67–80.CrossRefGoogle Scholar
  16. 16.
    Krishna, S. H., & Karanth, N. G. (2002). Catalysis Review, 44, 499–591.CrossRefGoogle Scholar
  17. 17.
    Kojima, Y., & Shimizu, S. (2003). Journal of Bioscience and Bioengineering, 96, 219–226.Google Scholar
  18. 18.
    Dandavate, V., Jinjala, J., Keharia, H., & Madamwar, D. (2009). Bioresource Technology, 100, 3374–3381.CrossRefGoogle Scholar
  19. 19.
    Singh, M., & Banerjee, U. C. (2007). Tetrahedron Asymmetry, 18, 2079–2085.CrossRefGoogle Scholar
  20. 20.
    Klibanov, A. M. (1986). Chemtech, 16, 354–359.Google Scholar
  21. 21.
    Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S., & Tominaga, Y. J. (1992). Journal of Biochemistry, 112, 598–603.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.New World Institute of Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.College of Life ScienceJiangxi Normal UniversityNanchangChina

Personalised recommendations