Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 671–686 | Cite as

Synthesis of Cholesterol-Conjugated Magnetic Nanoparticles for Purification of Human Paraoxonase 1

  • Zahoor Qadir SamraEmail author
  • Sadaf Shabir
  • Zainab Rehmat
  • Mariam Zaman
  • Aqsa Nazir
  • Nadia Dar
  • Muhammad Amin Athar
Article

Abstract

Human serum paraoxonase 1 (PON1) is known as an antioxidant and is also involved in the detoxification of many compounds. In this study, a novel purification strategy was employed to purify the PON1 by using cholesterol-conjugated magnetic nanoparticles. Magnetic nanoparticles were synthesized and conjugated with cholesterol through diazotized p-aminohippuric acid. In Fourier transform infrared spectrum of cholesterol-p-aminohippuric acid-Fe3O4 nanoparticles, the appearance of peaks at 3,358.3, 1,645 cm−1, and at 2,334.9 cm−1 confirmed the conjugation. The molecular weight of purified PON1 was nearly 45 kDa on sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE), and isoelectric point was 5.3. The specific activity was 438 U mg−1 protein, and the purification fold was 515 with 73% yield. The K m values were 1.3 and 0.74 mM with paraoxon and phenyl acetate, respectively. Western blot of 2D-PAGE confirmed the homogeneity and stability of the enzyme. Mg+2, Mn+2, glycerol, (NH4)2SO4, PEG 6000, Triton X-100, and phenylmethylsulfonyl fluoride did not show any effect on activity. Pb+2, Co+2, Zn2+, ethanol, β-mercaptoethanol, and acetone reduced the activity while Ni2+, Cd2+, Cu2+, iodoacetic acid, SDS, dimethylformamide, DMSO inhibited the activity. In vitro enzyme activity was slightly reduced by acetyl salicylic and acetaminophen and reduced 50% with amino glycosides and ampicillin antibiotics at concentrations of 0.6 and 30 mg ml−1, respectively. This is the first report for the synthesis of cholesterol-conjugated magnetic nanoparticles for simple purification of PON1 enzyme.

Keywords

Paraoxonase 1 Nanoparticles FTIR Antibiotics 2D-PAGE Western blot 

References

  1. 1.
    Mackness, M. I., Arrol, S., Mackness, B., & Durrington, P. N. (1997). Lancet, 349, 851–852.CrossRefGoogle Scholar
  2. 2.
    Mochizuki, H., Scherer, S. T., Nickle, D. J., Majer, M., Huizenga, J. J., Tsui, L. C., et al. (1998). Gene, 213, 149–157.CrossRefGoogle Scholar
  3. 3.
    Davies, H. G., Richter, R., Keifer, J. M., Broomfield, C. A., Sowalla, J., & Furlong, C. E. (1996). Nature Genetics, 14, 334–336.CrossRefGoogle Scholar
  4. 4.
    Billecke, S., Draganov, D., Counsell, R., Stetson, P., Watson, C., Hsu, C., et al. (2000). Drug Metabolism & Disposition, 28(11), 1335–1342.Google Scholar
  5. 5.
    Durringhton, P. N., Mackness, B., & Mackness, M. J. (2001). Arteriosclerosis Thrombosis Vascular Biology, 21, 473–480.Google Scholar
  6. 6.
    Sorgob, M. A., & Vilanova, E. (2002). Toxicology Letter, 128, 215–228.CrossRefGoogle Scholar
  7. 7.
    Cherry, N., Mackness, M., Durrington, P., Povey, A., Dippnall, M., Smith, T., et al. (2002). Lancet, 359, 763–764.CrossRefGoogle Scholar
  8. 8.
    Mackness, B. P., Durrington, A., Povey, S., Thomson, M., Dippnall, M., Mackness, T., et al. (2003). Pharmacogenetics, 13, 81–88.CrossRefGoogle Scholar
  9. 9.
    La Du, B. N. (1992). Pharmacogenetics of drug metabolism. New York: Pergamon Press.Google Scholar
  10. 10.
    Sorenson, R. C., Primo-Parma, S. I., Teiber, J., & La Du, B. N. (1996). Genomics, 33, 498–509.CrossRefGoogle Scholar
  11. 11.
    Draganov, D. I., Stetson, P. L., Watson, C. E., Billecke, S. S., & La Du, B. N. (2000). Journal of Biological Chemistry, 43, 33435–33442.CrossRefGoogle Scholar
  12. 12.
    Aviram, M., Billecke, S., Sorenson, R., Bisgaier, C., Newton, R., Rosenblat, M., et al. (1998). Arteriosclerosis Thrombosis Vascular Biology, 10, 1617–1624.Google Scholar
  13. 13.
    Sinan, S., Kockar, F., Gencer, N., Yildirim, H., & Arslan, O. (2006). Biochemistry, 71, 46–50.Google Scholar
  14. 14.
    Costa, L. G., Cole, T. B., Jarvik, G. P., & Furlong, C. E. (2003). Annual Review of Medicine, 54, 371–392.CrossRefGoogle Scholar
  15. 15.
    Tischer, W., & Wedekind, F. (1999). Topics in Current Chemistry, 200, 95–125.CrossRefGoogle Scholar
  16. 16.
    Jia, H., Guangyu, Z., & Wang, P. (2003). Biotechnology Bioengineering, 84, 407–413.CrossRefGoogle Scholar
  17. 17.
    Bornscheuer, U. T. (2003). Angewandte Chemie International, 42, 3336–3337.CrossRefGoogle Scholar
  18. 18.
    Schutt, W., Gruttner, C., Hafeli, U., Zborowski, M., Teller, J., Putzar, H., et al. (1997). Hybridoma, 16, 109–117.CrossRefGoogle Scholar
  19. 19.
    Rudge, S. R., Kurtz, T. L., Vessely, C. R., Catterall, L. G., & Williamson, D. L. (2000). Biomaterials, 21, 1411–1420.CrossRefGoogle Scholar
  20. 20.
    Josephson, L., Perez, J. M., & Weissleder, R. (2001). Angewandte Chemie International, 40, 3204–3206.CrossRefGoogle Scholar
  21. 21.
    Katz, E., Sheeney-Haj-Ichia, L., Buckmann, A. F., & Willner, I. (2002). Angewandte Chemie International, 41, 1343–1346.CrossRefGoogle Scholar
  22. 22.
    Gan, K. N., Smolen, A., Eckerson, H. W., & La Du, B. N. (1991). Drug Metabolism & Disposition, 19, 100–106.Google Scholar
  23. 23.
    Gupta, P. K., & Hung, C. T. (1989). Life Sciences, 44, 175–186.CrossRefGoogle Scholar
  24. 24.
    Sahoo, K. S., & Labhasetwar, V. (2003). Drug Discovery Today, 8, 1112–1120.CrossRefGoogle Scholar
  25. 25.
    Huang, S. H., Liao, M. H., & Chen, D. H. (2003). Biotechnology Progress, 19, 1095–1100.CrossRefGoogle Scholar
  26. 26.
    Takeshi, K., Tomoichiro, O., Mitsuaki, I., Tohru, E., Takayuki, F., Eiji, S., et al. (2000). Journal of Lipid Research, 41, 1358–1363.Google Scholar
  27. 27.
    Golmanesh, L., Mehrani, H., & Tabei, M. (2008). Journal of Biochemistry Biophysics Methods, 70, 1037–1042.CrossRefGoogle Scholar
  28. 28.
    Furlong, C. E., Costa, L. G., Hasett, C., Richter, R. J., Sundstorm, J. A., Alder, D. A., et al. (1993). Chemical Biology Interaction, 87, 35–48.CrossRefGoogle Scholar
  29. 29.
    Durrington, P. N., Mackness, B., & Mackness, M. I. (2002). Arteriosclerosis Thrombosis Vascular Biology, 22, 1248–1250.CrossRefGoogle Scholar
  30. 30.
    Samra, Z. Q., & Athar, M. A. (2009). Biotechnology Bioprocess Engineering (in press).Google Scholar
  31. 31.
    Liao, M. H., & Chen, D. H. (2002). Journal of Materials Chemistry, 12, 3654–3659.CrossRefGoogle Scholar
  32. 32.
    Weiler, E. W. (1980). Planta, 148, 262–272.CrossRefGoogle Scholar
  33. 33.
    Moesta, P., Hahn, M. G., & Grisebach, H. (1983). Planta Physiology, 73, 233–237.CrossRefGoogle Scholar
  34. 34.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–251.CrossRefGoogle Scholar
  35. 35.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  36. 36.
    Towbin, H. K., Staehelin, T., & Gordon, J. (1979). Proceeding of National Academy of Science, 76, 4350–4359.CrossRefGoogle Scholar
  37. 37.
    Harlow, E. D., & Lane, D. (1988). Antibodies, a laboratory manual. USA: CSH.Google Scholar
  38. 38.
    Walker, J. (1994). Methods in molecular biology: Basic protein and peptide protocol (Vol. 32). Totowa: Humana.Google Scholar
  39. 39.
    Tougou, K., Nakamura, S., & Wantanabe, S. (1998). Drug Metabolism & Disposition, 26, 355–359.Google Scholar
  40. 40.
    Malin, R., Laaksonen, R., & Knuuti, J. (2001). Pharmacogenetics, 11, 625–633.CrossRefGoogle Scholar
  41. 41.
    Tomas, M., Senti, M., Gracia-Faria, F., Vila, J., Torrents, A., Covas, M., et al. (2000). Arteriosclerosis Thrombosis Vascular Biology, 20, 2113–2119.Google Scholar
  42. 42.
    Leviev, I., & James, R. (2000). Atherosclerosis, 151, 41–48.Google Scholar
  43. 43.
    Kudchodkar, B. J., Lacko, A. G., Dory, L., & Fungwe, T. V. (2000). Journal of Nutrition, 30, 2427–2433.Google Scholar
  44. 44.
    Shih, D. M., Gu, L., Xia, Y. R., Navab, M., Li, W. F., Hama, S., et al. (1998). Nature, 394, 284–287.CrossRefGoogle Scholar
  45. 45.
    Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bisgaier, C. L., et al. (1999). Free Radical Biology & Medicine, 26(7–8), 892–904.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Zahoor Qadir Samra
    • 1
    Email author
  • Sadaf Shabir
    • 1
  • Zainab Rehmat
    • 1
  • Mariam Zaman
    • 1
  • Aqsa Nazir
    • 1
  • Nadia Dar
    • 2
  • Muhammad Amin Athar
    • 1
  1. 1.Institute of Biochemistry and Biotechnology, Quaid-i-Azam CampusUniversity of the PunjabLahorePakistan
  2. 2.Jinnah Degree College for WomenLahorePakistan

Personalised recommendations