Skip to main content
Log in

Synthesis of Cholesterol-Conjugated Magnetic Nanoparticles for Purification of Human Paraoxonase 1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 18 October 2016

Abstract

Human serum paraoxonase 1 (PON1) is known as an antioxidant and is also involved in the detoxification of many compounds. In this study, a novel purification strategy was employed to purify the PON1 by using cholesterol-conjugated magnetic nanoparticles. Magnetic nanoparticles were synthesized and conjugated with cholesterol through diazotized p-aminohippuric acid. In Fourier transform infrared spectrum of cholesterol-p-aminohippuric acid-Fe3O4 nanoparticles, the appearance of peaks at 3,358.3, 1,645 cm−1, and at 2,334.9 cm−1 confirmed the conjugation. The molecular weight of purified PON1 was nearly 45 kDa on sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE), and isoelectric point was 5.3. The specific activity was 438 U mg−1 protein, and the purification fold was 515 with 73% yield. The K m values were 1.3 and 0.74 mM with paraoxon and phenyl acetate, respectively. Western blot of 2D-PAGE confirmed the homogeneity and stability of the enzyme. Mg+2, Mn+2, glycerol, (NH4)2SO4, PEG 6000, Triton X-100, and phenylmethylsulfonyl fluoride did not show any effect on activity. Pb+2, Co+2, Zn2+, ethanol, β-mercaptoethanol, and acetone reduced the activity while Ni2+, Cd2+, Cu2+, iodoacetic acid, SDS, dimethylformamide, DMSO inhibited the activity. In vitro enzyme activity was slightly reduced by acetyl salicylic and acetaminophen and reduced 50% with amino glycosides and ampicillin antibiotics at concentrations of 0.6 and 30 mg ml−1, respectively. This is the first report for the synthesis of cholesterol-conjugated magnetic nanoparticles for simple purification of PON1 enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mackness, M. I., Arrol, S., Mackness, B., & Durrington, P. N. (1997). Lancet, 349, 851–852.

    Article  CAS  Google Scholar 

  2. Mochizuki, H., Scherer, S. T., Nickle, D. J., Majer, M., Huizenga, J. J., Tsui, L. C., et al. (1998). Gene, 213, 149–157.

    Article  CAS  Google Scholar 

  3. Davies, H. G., Richter, R., Keifer, J. M., Broomfield, C. A., Sowalla, J., & Furlong, C. E. (1996). Nature Genetics, 14, 334–336.

    Article  CAS  Google Scholar 

  4. Billecke, S., Draganov, D., Counsell, R., Stetson, P., Watson, C., Hsu, C., et al. (2000). Drug Metabolism & Disposition, 28(11), 1335–1342.

    CAS  Google Scholar 

  5. Durringhton, P. N., Mackness, B., & Mackness, M. J. (2001). Arteriosclerosis Thrombosis Vascular Biology, 21, 473–480.

    Google Scholar 

  6. Sorgob, M. A., & Vilanova, E. (2002). Toxicology Letter, 128, 215–228.

    Article  Google Scholar 

  7. Cherry, N., Mackness, M., Durrington, P., Povey, A., Dippnall, M., Smith, T., et al. (2002). Lancet, 359, 763–764.

    Article  CAS  Google Scholar 

  8. Mackness, B. P., Durrington, A., Povey, S., Thomson, M., Dippnall, M., Mackness, T., et al. (2003). Pharmacogenetics, 13, 81–88.

    Article  CAS  Google Scholar 

  9. La Du, B. N. (1992). Pharmacogenetics of drug metabolism. New York: Pergamon Press.

    Google Scholar 

  10. Sorenson, R. C., Primo-Parma, S. I., Teiber, J., & La Du, B. N. (1996). Genomics, 33, 498–509.

    Article  Google Scholar 

  11. Draganov, D. I., Stetson, P. L., Watson, C. E., Billecke, S. S., & La Du, B. N. (2000). Journal of Biological Chemistry, 43, 33435–33442.

    Article  Google Scholar 

  12. Aviram, M., Billecke, S., Sorenson, R., Bisgaier, C., Newton, R., Rosenblat, M., et al. (1998). Arteriosclerosis Thrombosis Vascular Biology, 10, 1617–1624.

    Google Scholar 

  13. Sinan, S., Kockar, F., Gencer, N., Yildirim, H., & Arslan, O. (2006). Biochemistry, 71, 46–50.

    CAS  Google Scholar 

  14. Costa, L. G., Cole, T. B., Jarvik, G. P., & Furlong, C. E. (2003). Annual Review of Medicine, 54, 371–392.

    Article  CAS  Google Scholar 

  15. Tischer, W., & Wedekind, F. (1999). Topics in Current Chemistry, 200, 95–125.

    Article  CAS  Google Scholar 

  16. Jia, H., Guangyu, Z., & Wang, P. (2003). Biotechnology Bioengineering, 84, 407–413.

    Article  Google Scholar 

  17. Bornscheuer, U. T. (2003). Angewandte Chemie International, 42, 3336–3337.

    Article  CAS  Google Scholar 

  18. Schutt, W., Gruttner, C., Hafeli, U., Zborowski, M., Teller, J., Putzar, H., et al. (1997). Hybridoma, 16, 109–117.

    Article  CAS  Google Scholar 

  19. Rudge, S. R., Kurtz, T. L., Vessely, C. R., Catterall, L. G., & Williamson, D. L. (2000). Biomaterials, 21, 1411–1420.

    Article  CAS  Google Scholar 

  20. Josephson, L., Perez, J. M., & Weissleder, R. (2001). Angewandte Chemie International, 40, 3204–3206.

    Article  CAS  Google Scholar 

  21. Katz, E., Sheeney-Haj-Ichia, L., Buckmann, A. F., & Willner, I. (2002). Angewandte Chemie International, 41, 1343–1346.

    Article  CAS  Google Scholar 

  22. Gan, K. N., Smolen, A., Eckerson, H. W., & La Du, B. N. (1991). Drug Metabolism & Disposition, 19, 100–106.

    CAS  Google Scholar 

  23. Gupta, P. K., & Hung, C. T. (1989). Life Sciences, 44, 175–186.

    Article  CAS  Google Scholar 

  24. Sahoo, K. S., & Labhasetwar, V. (2003). Drug Discovery Today, 8, 1112–1120.

    Article  CAS  Google Scholar 

  25. Huang, S. H., Liao, M. H., & Chen, D. H. (2003). Biotechnology Progress, 19, 1095–1100.

    Article  CAS  Google Scholar 

  26. Takeshi, K., Tomoichiro, O., Mitsuaki, I., Tohru, E., Takayuki, F., Eiji, S., et al. (2000). Journal of Lipid Research, 41, 1358–1363.

    Google Scholar 

  27. Golmanesh, L., Mehrani, H., & Tabei, M. (2008). Journal of Biochemistry Biophysics Methods, 70, 1037–1042.

    Article  CAS  Google Scholar 

  28. Furlong, C. E., Costa, L. G., Hasett, C., Richter, R. J., Sundstorm, J. A., Alder, D. A., et al. (1993). Chemical Biology Interaction, 87, 35–48.

    Article  CAS  Google Scholar 

  29. Durrington, P. N., Mackness, B., & Mackness, M. I. (2002). Arteriosclerosis Thrombosis Vascular Biology, 22, 1248–1250.

    Article  CAS  Google Scholar 

  30. Samra, Z. Q., & Athar, M. A. (2009). Biotechnology Bioprocess Engineering (in press).

  31. Liao, M. H., & Chen, D. H. (2002). Journal of Materials Chemistry, 12, 3654–3659.

    Article  CAS  Google Scholar 

  32. Weiler, E. W. (1980). Planta, 148, 262–272.

    Article  CAS  Google Scholar 

  33. Moesta, P., Hahn, M. G., & Grisebach, H. (1983). Planta Physiology, 73, 233–237.

    Article  CAS  Google Scholar 

  34. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–251.

    Article  CAS  Google Scholar 

  35. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  36. Towbin, H. K., Staehelin, T., & Gordon, J. (1979). Proceeding of National Academy of Science, 76, 4350–4359.

    Article  CAS  Google Scholar 

  37. Harlow, E. D., & Lane, D. (1988). Antibodies, a laboratory manual. USA: CSH.

    Google Scholar 

  38. Walker, J. (1994). Methods in molecular biology: Basic protein and peptide protocol (Vol. 32). Totowa: Humana.

    Google Scholar 

  39. Tougou, K., Nakamura, S., & Wantanabe, S. (1998). Drug Metabolism & Disposition, 26, 355–359.

    CAS  Google Scholar 

  40. Malin, R., Laaksonen, R., & Knuuti, J. (2001). Pharmacogenetics, 11, 625–633.

    Article  CAS  Google Scholar 

  41. Tomas, M., Senti, M., Gracia-Faria, F., Vila, J., Torrents, A., Covas, M., et al. (2000). Arteriosclerosis Thrombosis Vascular Biology, 20, 2113–2119.

    CAS  Google Scholar 

  42. Leviev, I., & James, R. (2000). Atherosclerosis, 151, 41–48.

    Google Scholar 

  43. Kudchodkar, B. J., Lacko, A. G., Dory, L., & Fungwe, T. V. (2000). Journal of Nutrition, 30, 2427–2433.

    Google Scholar 

  44. Shih, D. M., Gu, L., Xia, Y. R., Navab, M., Li, W. F., Hama, S., et al. (1998). Nature, 394, 284–287.

    Article  CAS  Google Scholar 

  45. Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bisgaier, C. L., et al. (1999). Free Radical Biology & Medicine, 26(7–8), 892–904.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor Qadir Samra.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12010-016-2268-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samra, Z.Q., Shabir, S., Rehmat, Z. et al. Synthesis of Cholesterol-Conjugated Magnetic Nanoparticles for Purification of Human Paraoxonase 1. Appl Biochem Biotechnol 162, 671–686 (2010). https://doi.org/10.1007/s12010-009-8840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8840-4

Keywords

Navigation