Skip to main content
Log in

Hemolytic and Antimicrobial Activities Differ Among Saponin-rich Extracts From Guar, Quillaja, Yucca, and Soybean

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hemolytic and antibacterial activities of eight serial concentrations ranged from 5-666 µg/mL of saponin-rich extracts from guar meal (GM), quillaja, yucca, and soybean were tested in 96-well plates and read by enzyme-linked immunosorbent assay plate-well as 650 nm. Hemolytic assay used a 1% suspension of chicken red blood cells with water and phosphate buffered saline as positive and negative controls, respectively. Antibacterial activity against Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli were evaluated using ampicillin and bacteria without saponin-rich extract as positive and negative controls, respectively. The 100% MeOH GM and commercial quillaja saponin-rich extracts were significantly the highest in both hemolytic and antibacterial activities against all bacteria at the same concentration tested. Soybean saponin-rich extract had no antibacterial activity against any of the bacteria at the concentrations tested while yucca saponin-rich extract had no antibacterial activity against the gram-negative bacteria at the concentrations tested. GM and quillaja saponin-rich extracts were hemolytic, while yucca and soybean saponin-rich extracts were not hemolytic at the concentrations tested. No saponin-rich extract source had antibacterial activity against S. typhimurium or E. coli at the concentrations tested. Both GM and quillaja saponin-rich extracts exhibited antibacterial activity against S. aureus. Saponin-rich extracts from different plant sources have different hemolytic and antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wallace, R. J. (2004). Antimicrobial properties of plant secondary metabolites. Proceedings of the Nutrition Society, 63, 621–629.

    Article  CAS  Google Scholar 

  2. Murry, A. C., Jr., Hinton, A., Jr., & Morrison, H. (2004). Inhibition of growth of Escherichia coli, Salmonella typhimurium, and Clostridia perfringens on chicken feed media by Lactobacillus salivarius and Lactobacillus plantarum. International Journal of Poultry Science, 3, 603–607.

    Article  Google Scholar 

  3. Van Immerseel, F., Russell, J. B., Flythe, M. D., Gantois, I., Timbermont, L., Pasmans, F., et al. (2006). The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathology, 35, 182–188.

    Article  Google Scholar 

  4. Moore, R. W., Byrd, J. A., Knape, K. D., Anderson, R. C., Callaway, T. R., Edrington, T., et al. (2006). The effect of an experimental chlorate product on Salmonella recovery of turkeys when administered prior to feed and water withdrawal. Poultry Science, 85, 2101–2105.

    CAS  Google Scholar 

  5. Vicente, J. L., Torres-Rodriguez, A., Higgins, S. E., Pixley, C., Tellez, G., & Hargis, B. M. (2005). Effect of a probiotic culture on horizontal transmission of Salmonella enteritidis in turkey poults. Poultry Science, 84(Suppl.1), 101. Abstr.

    Google Scholar 

  6. Sen, S., Makkar, H. P. S., Muetzel, S., & Becker, K. (1998). Effect of Quillaja saponaria saponins and Yucca schidigera plant extract on growth of Escherichia coli. Letters in Applied Microbiology, 27, 35–38.

    Article  CAS  Google Scholar 

  7. Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z., et al. (2006). Antimicrobial activity of saponins from Medicago spp.: Structure-activity relationship. Phytotherapy Research, 20, 454–457.

    Article  CAS  Google Scholar 

  8. Curl, C. L., Price, R. K., & Fenwick, G. R. (1986). Isolation and structural elucidation of a triterpenoid saponin from guar, Cyamopsis tetragonoloba. Phytochemistry, 25, 2675–2676.

    Article  Google Scholar 

  9. Kaneda, N., Nakanishi, H., & Staba, J. (1987). Steroidal constituents of Yucca schidigera plants and tissue cultures. Phytochemistry, 26, 1425–1429.

    Article  CAS  Google Scholar 

  10. Khalil, A. H. & EI-Adawy, T. A. (1994). Isolation, identification and toxicity of saponin from different legumes. Food Chemistry, 50, 197–201.

    Article  CAS  Google Scholar 

  11. Hassan, S. M., Haq, A. U., Byrd, J. A., Berhow, A. M., Cartwright, A. L.,& Bailey, C. A. (2010). Hemolytic and antimicrobial activities of saponin-rich extracts from guar meal. Food Chemistry, 119, 600–605.

    Google Scholar 

  12. Duncan, D. B. (1955). Multiple ranges and multiple F test. Biometrics, 11, 1–42.

    Article  Google Scholar 

  13. Oleszek, W. (1988). Solid phase extraction fractionation of alfalfa saponins. Journal of the Science of Food and Agriculture, 44, 43–49.

    Article  CAS  Google Scholar 

  14. Choi, S., Jung, S. Y., Kim, C. H., Kim, H. S., Rhim, H., Kim, S. C., et al. (2001). Effect of ginsenosides on voltage-dependent Ca2+ channel subtypes in bovine chromaffin cells. Journal of Ethnopharmacology, 74, 75–81.

    Article  CAS  Google Scholar 

  15. Oleszek, W. (1996). Alfalfa saponins: Structure, biological, activity, and chemotaxonomy. In G. R. Waller & K. Yamasaki (Eds.), Saponins used in food and agriculture (pp. 155–170). NewYork: Plenum Press.

    Google Scholar 

  16. Birk, Y., Bondi, A., Gestetner, B., & Ishaaya, I. (1963). A thermostable hemolytic factor in soybeans. Nature, 197, 1089–1090.

    Article  CAS  Google Scholar 

  17. Takechi, M., & Tanaka, Y. (1995). Structure-activity relationship of synthetic methyl urosylate glycosides. Phytochemistry, 34, 675–677.

    Article  Google Scholar 

  18. Santos, W. R., Bernardo, R. R., Pecanha, L. M. T., Palatink, M., Parente, J. P., & Palatink de Sousa, C. B. (1997). Hemolytic activities of plant saponins and adjuvant. Effect of Peria ndra mediterranea saponin the humoral response to the FML antigen of Leishmania donovani. Vaccine, 15, 1024–1029.

    Article  CAS  Google Scholar 

  19. Jenkins, K. J., & Atwal, A. S. (1994). Effects of dietary saponins on fecal bile acids and neutral sterols, and availability of vitamins A and E in the chick. Journal of Nutritional Biochemistry, 5, 134–138.

    Article  CAS  Google Scholar 

  20. Gestetner, B., Birk, Y., & Tencer, Y. (1968). Soybean saponins. Fate of ingested saponins and the physiological aspect of their hemolytic activity. Journal of the Science of Food and Agriculture, 16, 1031–1035.

    Article  CAS  Google Scholar 

  21. Gee, J. M., Price, K. R., Johnson, I. T., & Rhodes, M. J. (1998). The relationship between saponin structure and bioactivity—a preliminary study, in Cost 98: Effects of Antinutrients on The Nutritional Value of Legume Diets. In S. Bardocz & A. Pusztai (Eds.), European Commission, Luxemburg, pp. 8–14.

  22. Gestetner, B., Assa, Y., Henis, Y., Birk, Y., & Bondi, A. (1971). Lucerne saponins, relationship between their chemical constitution, and hemolytic and antifungal activities. Journal of the Science of Food and Agriculture, 22, 168–172.

    Article  CAS  Google Scholar 

  23. Mahato, S. B., Sudip, S. K., & Poddar, G. (1988). Review article number 38: Triterpenoid saponins. Phytochemistry, 27, 3037–3067.

    Article  CAS  Google Scholar 

  24. Kuznetzova, T. A., Anisimov, M. M., & Popov, A. M. (1982). A comparative study in vitro of physiological activity of triterpene glycosides of marine invertebrates of echinoderm type. Comparative Biochemistry and Physiology, 73c, 41–43.

    Google Scholar 

  25. Namba, T., Yoshsaki, M., Tomimori, T., Kobashi, K., Mitsui, K., & Hase, J. (1973). Hemolytic and protective activity of ginseng saponins. Chemical and Pharmaceutical Bulletin, 21, 459–461.

    CAS  Google Scholar 

  26. Laurence, V., Pauline, G., Clément, F., Odile, T., Marc, L., & Catherine, L. (2005). Hemolytic acylated triterpenoid saponins from Harpullia austro caledonica. Phytochemistry, 66, 825–835.

    Article  Google Scholar 

  27. Pillion, D. J., Amsden, J. A., Kensil, C. R., & Recchia, J. (1996). Structure-function relationship among quillaja saponins serving as excipients for nasal and ocular delivery of insulin. Journal of Pharmaceutical Sciences, 85, 518–524.

    Article  CAS  Google Scholar 

  28. Hu, M., Konoki, K., & Tachibana, K. (1996). Cholesterol-independent membrane disruption caused by triterpenoid saponins. Biochimica et Biophysica Acta Acta Lipid Metabolism, 1299, 252–258.

    Article  Google Scholar 

  29. Morrissey, J. P., & Osbourn, A. E. (1999). Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiology and Molecular Biology Reviews, 63, 708–724.

    CAS  Google Scholar 

  30. Wang, Y., McAllister, T. A., Yanke, L. J., & Cheeke, P. R. (2000). Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. Journal of Applied Microbiology, 88, 887–896.

    Article  CAS  Google Scholar 

  31. Tanaka, O., Tamura, Y., Masuda, H., & Mizutani, K. (1996). Application of saponins in foods and cosmetics: Saponins of Mohave yucca and Sapindus mukurossi. In G. R. Waller & K. Yamasaki (Eds.), Saponins used food and agriculture (pp. 1–11). New York: Plenum Press.

    Google Scholar 

  32. Cheeke, P. R., & Otero, R. (2005). Yucca, quillaja may have role in animal nutrition. Feedstuffs, 3(Suppl.), 11–14.

    Google Scholar 

  33. Kuete, V., Tangmouo, J. G., Penlap Beng, V., Ngounou, F. N., & Lontsi, D. J. (2006). Antimicrobial activity of the methanolic extract from the stem bark of Tridesmostemon omphalocarpoides (Sapotaceae). Journal of Ethnopharmacology, 8, 5–11.

    Article  Google Scholar 

  34. Rakhimov, R. R., Benetis, N. P., Lund, A., Hwang, J. S., Prokofev, A. I., & Lebedev, Y. S. (1996). Intramolecular and reorientation dynamics of bis (triphenylphosphine)-3, 6-di-tert-butyl-4, 5-dimethoxy-o-semiquinone complex of copper (I) in viscous media. Chemical Physics Letters, 225, 156–162.

    Article  Google Scholar 

  35. Mandal, P., Sinha Babu, S. P., & Mandal, N. C. (2005). Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia, 76, 462–465.

    Article  CAS  Google Scholar 

  36. Higuchi, R., Tokimitsu, Y., Fujioka, T., Komori, T., Kawasaki, T., & Oakenful, D. G. (1987). Structure of desacylsaponins obtained from the bark of Quillaja saponiaria. Phytochemistry, 26, 229–235.

    Article  Google Scholar 

  37. Wei, Z., & David, G. P. (2009). Chemical and biological characterization of oleanane triterpenoids from soy. Molecules, 14(8), 2959–2975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif M. Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, S.M., Byrd, J.A., Cartwright, A.L. et al. Hemolytic and Antimicrobial Activities Differ Among Saponin-rich Extracts From Guar, Quillaja, Yucca, and Soybean. Appl Biochem Biotechnol 162, 1008–1017 (2010). https://doi.org/10.1007/s12010-009-8838-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8838-y

Keywords

Navigation