Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 654–661 | Cite as

Simulated Microgravity Affects Growth of Escherichia coli and Recombinant β-d-Glucuronidase Production

  • Liang Xiang
  • Feng Qi
  • DaZhang Dai
  • Chun LiEmail author
  • YuanDa Jiang
Article

Abstract

Effects of simulated microgravity (SMG) on bacteria have been studied in various aspects. However, few reports are available about production of recombinant protein expressed by bacteria in SMG. In this study growth of E. coli BL21 (DE3) cells transformed with pET-28a (+)-pgus in double-axis clinostat that could model low shear SMG environment and the recombinant β-d-glucuronidase (PGUS) expression have been investigated. Results showed that the cell dry weights in SMG were 16.47%, 38.06%, and 28.79% more than normal gravity (NG) control, and the efficiency of the recombinant PGUS expression in SMG were 18.33%, 19.36%, and 33.42% higher than that in NG at 19 °C, 28 °C, and 37 °C, respectively (P < 0.05).

Keywords

Simulated microgravity (SMG) Normal gravity (NG) Recombinant PGUS Expression E. coli 

Notes

Acknowledgments

This work was funded by the National “863” High-Tech Project (2008AA12A218-2), Natural Science Foundation of China (20776017), and the Natural Science Foundation of Beijing (5072028).

References

  1. 1.
    Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbiology and Molecular Biology Reviews, 68, 365–361.CrossRefGoogle Scholar
  2. 2.
    Hammond, T. G., Lewis, F. C., Goodwin, T. J., Linnehan, R. M., Wolf, D. A., Hire, K. P., et al. (1999). Nature Medicine, 5, 359.CrossRefGoogle Scholar
  3. 3.
    Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., LeBlanc, C. L., Bentrup, K. H. Z., et al. (2003). Journal of Microbiological Methods, 54, 1–11.CrossRefGoogle Scholar
  4. 4.
    Baker, P. W., Meyer, M. L., & Leff, L. G. (2004). Microgravity Science and Technology, 15, 39–44.CrossRefGoogle Scholar
  5. 5.
    Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2000). Letters in Applied Microbiology, 31, 39–41.CrossRefGoogle Scholar
  6. 6.
    Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Applied and Environmental Microbiology, 63, 4090–4092.Google Scholar
  7. 7.
    Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Current Microbiology, 34, 199–204.CrossRefGoogle Scholar
  8. 8.
    Demain, A. L., & Fang, A. (2001). The Chemical Record, 1, 333–346.CrossRefGoogle Scholar
  9. 9.
    Brown, R. B., Klaus, D., & Todd, P. (2002). Microgravity Science and Technology, 13, 24–29.CrossRefGoogle Scholar
  10. 10.
    Kacena, M. A., Merrell, G. A., Manfredi, B., Smith, E. E., Klaus, D. M., & Todd, P. (1999). Applied Microbiology and Biotechnology, 51, 229–234.CrossRefGoogle Scholar
  11. 11.
    Khoo, S. H. G., & Al-Rubeai, M. (2009). Biotechnology and Bioengineering, 102, 188–199.CrossRefGoogle Scholar
  12. 12.
    Saarinen, M. A., & Murhammer, D. W. (2000). In Vitro Cellular & Developmental Biology-Animal, 36, 362–366.CrossRefGoogle Scholar
  13. 13.
    Feng, S. J., Li, C., Li, H., & Wang, X. Y. (2007). Journal of Chemical Engineering of Chinese Universities, 21, 977–982.Google Scholar
  14. 14.
    Matsui, S., Matsumoto, H., Sonoda, Y., Ando, K., Aizu-Yokota, E., Sato, T., et al. (2004). International Immunopharmacology, 4, 1633–1644.CrossRefGoogle Scholar
  15. 15.
    Schwarz, R. P., Wolf, D. A., & Trinh, T. (1991). Rotating cell culture vessel. U.S. patent 5,026,650.Google Scholar
  16. 16.
    Hammond, T. G., & Hammond, J. M. (2001). American Journal of Physiology-Renal Physiology, 281, F12–F25.Google Scholar
  17. 17.
    Claeys, E., Uytterhaegen, L., Buts, B., & Demeyer, D. (1995). Meat Science, 39, 177–193.CrossRefGoogle Scholar
  18. 18.
    Navran, S. (2007). Cell technology for cell products, 567–569.Google Scholar
  19. 19.
    Benoit, M. R., & Klaus, D. M. (2007). Advances in Space Research, 39, 1225–1232.CrossRefGoogle Scholar
  20. 20.
    Klaus, D., Simske, S., Todd, P., & Stodieck, L. (1997). Microbiology, 143, 449–455.CrossRefGoogle Scholar
  21. 21.
    Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2000). Applied Microbiology and Biotechnology, 54, 33–36.CrossRefGoogle Scholar
  22. 22.
    Fang, A., Pierson, D. L., & Mishra, S. K. (1997). Journal of Industrial Microbiology and Biotechnology, 18, 22–25.CrossRefGoogle Scholar
  23. 23.
    Tucker, D. L., Ott, C. M., Huff, S., Fofanov, Y., Pierson, D. L., Willson, R. C., et al. (2007). BMC Microbiology, 7, 1–16.CrossRefGoogle Scholar
  24. 24.
    Sheehan, K. B., McInnerney, K., Purevdorj-Gage, B., Altenburg, S. D., & Hyman, L. E. (2007). BMC Genomics, 8, 1–12.CrossRefGoogle Scholar
  25. 25.
    Johanson, K., Allen, P. L., Lewis, F., Cubano, L. A., Hyman, L. E., & Hammond, T. G. (2002). Journal of Applied Physiology, 93, 2171–2180.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Liang Xiang
    • 1
  • Feng Qi
    • 1
  • DaZhang Dai
    • 1
  • Chun Li
    • 1
    Email author
  • YuanDa Jiang
    • 2
  1. 1.School of Life ScienceBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Center for Space and Applied Research Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations