Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 687–697 | Cite as

Anti-adipocyte scFv-Fc Antibody Suppresses Subcutaneous Adipose Tissue Development and Affects Lipid Metabolism in Minipigs

  • M. L. Cheng
  • S. M. Zhao
  • W. Z. Li
  • X. Zhang
  • C. R. Ge
  • G. Duan
  • S. Z. GaoEmail author
Article

Abstract

Anti-adipocyte monoclonal antibody has been shown to reduce body fat mass in animals. Here, we investigated the effects of an anti-adipocyte antibody (single-chain variable fragment and crystallizable fragment, scFv-Fc) on pig subcutaneous adipose tissue development and lipid metabolism. The scFv-Fc antibody did not alter feed intake or body weight of treated pigs. It suppressed subcutaneous adipose tissue development by reducing the percentage of larger adipocytes, which led to a reduction in body fat mass and subcutaneous adipose tissue thickness. Body fat mass was reduced by reducing triglyceride biosynthesis and promoting triglyceride lipolysis in adipose tissue. There was an increase in lipoprotein lipase mRNA expression in adipose tissue and activity in blood and an enhanced transportation of circulating high-density lipoprotein, low-density lipoprotein, and free fatty acids. Blood concentrations of triglyceride, total cholesterol, glucose, insulin, and adiponectin and mRNA expression of adiponectin in adipose tissue remained unaffected. These findings suggest that anti-adipocyte scFv-Fc antibody may have an application for reducing body fat mass in obese subjects.

Keywords

scFv-Fc antibody Adipocyte Body fat Obesity Minipigs 

Notes

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (30260079) and the Natural Science Foundation Key Project of Yunnan Province, China (2000C0005Z).

References

  1. 1.
    Haslam, D. W., & James, W. P. (2005). Obesity. Lancet, 366, 1197–1209.CrossRefGoogle Scholar
  2. 2.
    Bray, G. A. (2004). Medical consequences of obesity. Journal of Clinical Endocrinology and Metabolism, 89, 2583–2589.CrossRefGoogle Scholar
  3. 3.
    Grundy, S. M. (2004). Obesity, metabolic syndrome, and cardiovascular disease. Journal of Clinical Endocrinology and Metabolism, 89, 2595–2600.CrossRefGoogle Scholar
  4. 4.
    Shick, S. M., Wing, R. R., Klem, M. L., McGuire, M. T., Hill, J. O., & Seagle, H. (1998). Persons successful at long-term weight loss and maintenance continue to consume a low-energy, low-fat diet. Journal of the American Dietetic Association, 98, 408–413.CrossRefGoogle Scholar
  5. 5.
    Tate, D. F., Jeffery, R. W., Sherwood, N. E., & Wing, R. R. (2007). Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? American Journal of Clinical Nutrition, 85, 954–959.Google Scholar
  6. 6.
    Fonseca, V. (2003). Effect of thiazolidinediones on body weight in patients with diabetes mellitus. American Journal of Medicine, 115, 42–48.CrossRefGoogle Scholar
  7. 7.
    Flint, D. J., Coggrave, H., Futter, C. E., Gardner, M. J., & Clarke, T. J. (1986). Stimulatory and cytotoxic effects of an antiserum to adipocyte plasma membranes on adipose tissue metabolism in vitro and in vivo. International Journal of Obesity, 10, 69–76.Google Scholar
  8. 8.
    Flint, D. J. (1998). Effects of antibodies to adipocytes on body weight, food intake, and adipose tissue cellularity in obese rats. Biochemical and Biophysical Research Communications, 252, 263–268.CrossRefGoogle Scholar
  9. 9.
    Moloney, A. P., & Allen, P. (1989). Growth and weights of abdominal and carcass fat in sheep immunized against adipose cell membranes. Proceedings of the Nutrition Society, 48, 14–23.Google Scholar
  10. 10.
    Dulor, J. P., Reyne, Y., & Nougues, J. (1990). In vivo effects of a treatment with antibodies to adipocyte plasma membranes in rabbit. Reproduction, Nutrition, Development, 30, 49–56.CrossRefGoogle Scholar
  11. 11.
    Dong, J. D., Froman, P., & Hu, C. Y. (1991). Development and characterization of polyclonal antibody against chicken adipocytes. Comparative Biochemistry and Physiology, 99, 195–203.CrossRefGoogle Scholar
  12. 12.
    Hu, C. Y., & Suryawan, J. R. (1992). Effect of antisea to rat adipocytes on growth and body composition of the rat. Comparative Biochemistry and Physiology, 101, 619–623.CrossRefGoogle Scholar
  13. 13.
    Nassar, A. H., & Hu, C. Y. (1992). Characterization of polyclonal antibodies against ovine adipocyte plasma membranes. International Journal of Biochemistry, 24, 599–608.CrossRefGoogle Scholar
  14. 14.
    Kestin, S. R. (1993). Decreased fat content and increased lean in pigs treated with antibodies to adipocyte plasma membranes. Journal of Animal Science, 71, 1486–1495.Google Scholar
  15. 15.
    Cryer, A. (1997). Porcine adipocyte antigens and their use in the immunological control of fat. United States Patent 5631009, May 20.Google Scholar
  16. 16.
    Killefer, J., & Hu, C. Y. (1990). Production of a novel monoclonal antibody to porcine adipocyte plasma membrane. Proceedings of the Society for Experimental Biology and Medicine, 194, 172–181.Google Scholar
  17. 17.
    Wright, J. T., & Hausman, G. J. (1990). Monoclonal antibodies against cell surface antigens expressed during porcine adipocyte differentiation. International Journal of Obesity, 14, 395–409.Google Scholar
  18. 18.
    Wright, J. T., & Hausman, G. J. (1995). Monoclonal antibody-mediated cytotoxicity of adipocytes. Obesity Research, 3, 265–272.Google Scholar
  19. 19.
    de Clercq, L., Mourot, J., Genart, C., Davidts, V., Boone, C., & Remacle, C. (1997). An anti-adipocyte monoclonal antibody is cytotoxic to porcine preadipocytes in vitro and depresses the development of pig adipose tissue. Journal of Animal Science, 75, 1791–1797.Google Scholar
  20. 20.
    Wu, Y. J., Wright, J. T., Young, C. R., & Cartwright, A. L. (2000). Inhibition of chicken adipocyte differentiation by in vitro exposure to monoclonal antibodies against embryonic chicken adipocyte plasma membranes. Poultry Science, 79, 892–900.Google Scholar
  21. 21.
    Wu, Y. J., Wright, J. T., & Young, C. R. (2000). Inhibition of chicken adipocyte differentiation by in vitro exposure to monoclonal antibodies against embryonic chicken adipocyte plasma membranes. Poultry Science, 79, 892–906.Google Scholar
  22. 22.
    Hao, J. Y., Gao, S. Z., Wang, L., Zhang, X., & Zhang, Y. J. (2004). Isolation and identification of specific porcine adipocyte membrane protein. Chinese Journal of Veterinary Science, 24, 571–575.Google Scholar
  23. 23.
    Gao, S. Z., Zhang, X., Ge, C. R., Hao, J. Y., Wang, L., & Zhang, Y. J. (2005). Preparation and characterization of the specific monoclonal antibody to porcine adipocyte plasma membrane protein. Chinese Journal of Veterinary Science, 25, 185–188.Google Scholar
  24. 24.
    Gao, S. Z., Ge, C. R., Zhang, X., & Liu, Y. G. (2007). Effects of the monoclonal antibody against porcine 40 kDa adipocyte-specific plasma membrane protein on adipocytes and carcass composition. Acta Biochimica et Biophysica Sinica, 39, 490–498.CrossRefGoogle Scholar
  25. 25.
    Zhao, S. M., Liu, L. Y., Zhang, X., Ge, C. R., Liu, Y. G., & Gao, S. Z. (2009). Effects of monoclonal antibody on fat tissue development, carcass composition, growth performance and fat metabolism of pigs by subcutaneous injection. Livestock Science, 122, 8–15.CrossRefGoogle Scholar
  26. 26.
    Gao, S. Z., Liu, L. Y., Zhao, S. M., Hu, H. M., Ge, C. R., Liu, Y. G., et al. (2008). Effects of monoclonal antibody against adipocyte-specific membrane protein on lipid metabolism in pig. Agricultural Science in China, 7, 232–238.CrossRefGoogle Scholar
  27. 27.
    Wang, L., Gao, S. Z., Zhang, X., Hao, J. Y., & Zhang, Y. J. (2004). Cloning and sequence analysis of scFv against 40 kDa adipocyte-specific membrane protein. Chinese Journal of Veterinary Science and Technology, 34, 11–16.Google Scholar
  28. 28.
    Gao, S. Z., Cheng, M. L., Wang, L., & Zhang, X. (2006). Construction of phage antibody library for scFv against 40 kDa adipocyte-specific membrane protein. Chinese Journal of Immunology, 22, 32–38.Google Scholar
  29. 29.
    Gao, S. Z., Yin, G. F., Zhang, Y. J., Wang, L., & Zhang, X. (2007). Construction of Pichia pastoris expression vector for production scFv-Fc fusion antibody against 40 kDa adipocyte-specific membrane protein. Chinese Journal of Veterinary Science, 27, 376–386.Google Scholar
  30. 30.
    Seveus, L., & Johannessen, J. V. (1978). Embedding, sectioning, and staining. In J. V. Johannessen (Ed.), Electron microscopy in human medicine, vol 1. Instruments and techniques. New York: McGraw-Hill International Book.Google Scholar
  31. 31.
    Higbie, A. D., Bidner, T. D., Matthews, J. O., Southern, L. L., Page, T. G., Persica, M. A., et al. (2002). Prediction of swine carcass composition by total body electrical conductivity (TOBEC). Journal of Animal Science, 80, 113–122.Google Scholar
  32. 32.
    Zhao, S., Ma, H., Zou, S., & Chen, W. (2007). Effects of in ovo administration of DHEA on lipid metabolism and hepatic lipogenetic genes expression in broiler chickens during embryonic development. Lipids, 42, 749–775.CrossRefGoogle Scholar
  33. 33.
    Martin, D. B., Horning, M. G., & Vagelos, P. R. (1961). Fatty acid synthesis in adipose tissue. I. Purification and properties of a long chain fatty acid-synthesizing system. Journal of Biological Chemistry, 236, 663–668.Google Scholar
  34. 34.
    Brewster, D. W., & Matsumura, F. (1988). Reduction of adipose tissue lipoprotein lipase activity as a result of in vivo administration of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin to the guinea pig. Biochemical Pharmacology, 37, 2247–2253.CrossRefGoogle Scholar
  35. 35.
    Tumbleson, M. E., & Schook, L. B. (1996). Advances in swine in biomedical research, vol 1–2. New York: Plenum.Google Scholar
  36. 36.
    Houpt, K. A., Houpt, T. R., & Pond, W. G. (1979). The pig as a model for the study of obesity and of control of food intake: A review. Yale Journal of Biology & Medicine, 52, 307–329.Google Scholar
  37. 37.
    Zechner, R. (1997). The tissue-specific expression of lipoprotein lipase: Implications for energy and lipoprotein metabolism. Current Opinion in Lipidology, 8, 77–88.CrossRefGoogle Scholar
  38. 38.
    Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., & Miyagawa, J. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications, 257, 79–83.CrossRefGoogle Scholar
  39. 39.
    Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., & Okamoto, Y. (2000). Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1595–1599.Google Scholar
  40. 40.
    Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R. E., et al. (2001). Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. Journal of Clinical Endocrinology and Metabolism, 86, 1930–1935.CrossRefGoogle Scholar
  41. 41.
    Kubota, N., Terauchi, Y., Yamauchi, T., Kubota, T., Moroi, M., & Matsui, J. (2002). Disruption of adiponectin causes insulin resistance and neointimal formation. Journal of Biological Chemistry, 277, 25863–25866.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • M. L. Cheng
    • 1
  • S. M. Zhao
    • 1
  • W. Z. Li
    • 1
  • X. Zhang
    • 1
  • C. R. Ge
    • 1
  • G. Duan
    • 1
  • S. Z. Gao
    • 1
    Email author
  1. 1.Yunnan Key Laboratory of Animal Nutrition and FeedYunnan Agricultural UniversityKunmingChina

Personalised recommendations