Skip to main content
Log in

Genome-Wide Expression Changes in Saccharomyces cerevisiae in Response to High-LET Ionizing Radiation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To understand the yeast response to high-linear energy transfer (LET) ionizing radiation (IR), we investigated global gene expression in yeast irradiated by three types of high-LET IR (fast neutrons, heavy ions, and thermal neutrons) and gamma rays using DNA microarray analysis. Stationary cells were irradiated by each IR and recultured in yeast–peptone–dextrose medium to allow repair for 40 min. RNA was then isolated from three independent samples of irradiated yeast. Genes involved in the Mec1p kinase pathway, which functions in DNA damage response, were induced by all forms of high-LET IR and by gamma rays. Some genes related to oxidative stress and the cell wall were induced by all forms of high-LET IRs. Gene expression patterns as a function of each type of high-LET IR were examined statistically by one-way analysis of variance. This analysis demonstrated the existence of irradiation-specific responses. For example, genes involved in ribosomal DNA synthesis were specifically induced by fast neutron irradiation, while the ubiquitin–proteasome system and heat shock response were specifically induced by thermal neutron irradiation. The study characterizes high-LET IR-induced gene expression and provides a molecular understanding of subsequent adaptation in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt-Ullrich, R. K., Dent, P., Grant, S., Mikkelsen, R. B., & Valerie, K. (2000). Radiation Research, 153, 245–257.

    Article  CAS  Google Scholar 

  2. Smith, M. L., & Fornace, A. J., Jr. (1996). Mutation Research, 340, 109–124.

    Google Scholar 

  3. Gulston, M., de Lara, C., Jenner, T., Davis, E., & O'Neill, P. (2004). Nucleic Acids Research, 32, 1602–1609.

    Article  CAS  Google Scholar 

  4. Furusawa, Y., Fukutsu, K., Aoki, M., Itsukaichi, H., Eguchi-Kasai, K., Ohara, H., et al. (2000). Radiation Research, 154, 485–496.

    Article  CAS  Google Scholar 

  5. Wulf, H., Kraft-Weyrather, W., Miltenburger, H. G., Blakely, E. A., Tobias, C. A., & Kraft, G. (1985). Radiation Research Supplement, 8, S122–S134.

    Article  CAS  Google Scholar 

  6. Goodhead, D. T. (1989). International Journal of Radiation Biology, 56, 623–634.

    Article  CAS  Google Scholar 

  7. Hada, M., & Georgakilas, A. G. (2008). Journal of Radiation Research (Tokyo), 49, 203–210.

    Article  CAS  Google Scholar 

  8. Blakely, E. A. (1992). Radiation and Environmental Biophysics, 31, 181–196.

    Article  CAS  Google Scholar 

  9. Castro, J. R., Saunders, W. M., Tobias, C. A., Chen, G. T., Curtis, S., Lyman, J. T., et al. (1982). International Journal of Radiation Oncology, Biology, Physics, 8, 2191–2198.

    CAS  Google Scholar 

  10. Raju, M. R. (1999). Journal of Radiation Research (Tokyo), 40, 74–84.

    Article  Google Scholar 

  11. Chen, D. J., Tsuboi, K., Nguyen, T., & Yang, T. C. (1994). Advances in Space Research, 14, 347–354.

    Article  CAS  Google Scholar 

  12. Takahashi, A., Matsumoto, H., Yuki, K., Yasumoto, J., Kajiwara, A., Aoki, M., et al. (2004). International Journal of Radiation Oncology, Biology, Physics, 60, 591–597.

    Article  Google Scholar 

  13. Zhang, R., Burns, F. J., Chen, H., Chen, S., & Wu, F. (2006). Radiation Research, 165, 570–581.

    Article  CAS  Google Scholar 

  14. Burns, F. J., Tang, M. S., Frenkel, K., Nadas, A., Wu, F., Uddin, A., et al. (2007). Radiation and Environmental Biophysics, 46, 195–199.

    Article  CAS  Google Scholar 

  15. Stewart, J., Ware, J., Fortina, P., Breaux, J., Gulati, S., & Kennedy, A. (2006). Oncology Reports, 16, 569–574.

    CAS  Google Scholar 

  16. Chang, P. Y., Bjornstad, K. A., Rosen, C. J., McNamara, M. P., Mancini, R., Goldstein, L. E., et al. (2005). Radiation Research, 164, 531–539.

    Article  CAS  Google Scholar 

  17. Roudkenar, M. H., Li, L., Baba, T., Kuwahara, Y., Nakagawa, H., Wang, L., et al. (2008). Journal of Radiation Research (Tokyo), 49, 29–40.

    Article  CAS  Google Scholar 

  18. Amundson, S. A., Do, K. T., Vinikoor, L., Koch-Paiz, C. A., Bittner, M. L., Trent, J. M., et al. (2005). Oncogene, 24, 4572–4579.

    Article  CAS  Google Scholar 

  19. Tachiiri, S., Katagiri, T., Tsunoda, T., Oya, N., Hiraoka, M., & Nakamura, Y. (2006). International Journal of Radiation Oncology, Biology, Physics, 64, 272–279.

    CAS  Google Scholar 

  20. Boerma, M., van der Wees, C. G., Vrieling, H., Svensson, J. P., Wondergem, J., van der Laarse, A., et al. (2005). BMC Genomics, 6, 6.

    Article  Google Scholar 

  21. Kimura, S., Ishidou, E., Kurita, S., Suzuki, Y., Shibato, J., Rakwal, R., et al. (2006). Biochemical and Biophysical Research Communications, 346, 51–60.

    Article  CAS  Google Scholar 

  22. Amundson, S. A., Lee, R. A., Koch-Paiz, C. A., Bittner, M. L., Meltzer, P., Trent, J. M., et al. (2003). Molecular Cancer Research, 1, 445–452.

    CAS  Google Scholar 

  23. Marko, N. F., Dieffenbach, P. B., Yan, G., Ceryak, S., Howell, R. W., McCaffrey, T. A., et al. (2003). Faseb Journal, 17, 1470–1486.

    Article  CAS  Google Scholar 

  24. Amundson, S. A., Bittner, M., Chen, Y., Trent, J., Meltzer, P., & Fornace, A. J., Jr. (1999). Oncogene, 18, 3666–3672.

    Article  CAS  Google Scholar 

  25. Resnick, M. A., & Cox, B. S. (2000). Mutation Research, 451, 1–11.

    CAS  Google Scholar 

  26. Yu, Z., Chen, J., Ford, B. N., Brackley, M. E., & Glickman, B. W. (1999). Environmental and Molecular Mutagenesis, 33, 3–20.

    Article  CAS  Google Scholar 

  27. Foury, F. (1997). Gene, 195, 1–10.

    Article  CAS  Google Scholar 

  28. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002). Nature, 418, 387–391.

    Article  CAS  Google Scholar 

  29. Momose, Y., & Iwahashi, H. (2001). Environmental Toxicology and Chemistry, 20, 2353–2360.

    CAS  Google Scholar 

  30. Sakurai, Y., & Kobayashi, T. (2002). The medical-irradiation characteristics for neutron capture therapy at the heavy water neutron irradiation facility of Kyoto University Research Reactor. Medical Physics, 29, 2328–2337.

    Article  CAS  Google Scholar 

  31. Mizukami, S., Suzuki, Y., Kitagawa, E., & Iwahashi, H. (2004). Chem-Bio Informatics Journal, 4, 38–55.

    Article  CAS  Google Scholar 

  32. Churchill, G. A. (2004). Biotechniques, 177, 173–175.

    Google Scholar 

  33. Sahai, H. A. M. (2000). The analysis of variance. Boston Brickhauser.

  34. Ho Sui, S. J., Mortimer, J. R., Arenillas, D. J., Brumm, J., Walsh, C. J., Kennedy, B. P., et al. (2005). Nucleic Acids Research, 33, 3154–3164.

    Article  Google Scholar 

  35. Ho Sui, S. J., Fulton, D. L., Arenillas, D. J., Kwon, A. T., & Wasserman, W. W. (2007). Nucleic Acids Research, 35, W245–W252.

    Article  Google Scholar 

  36. Iwahashi, H., Kitagawa, E., Suzuki, Y., Ueda, Y., Ishizawa, Y. H., Nobumasa, H., et al. (2007). BMC Genomics, 8, 95.

    Article  Google Scholar 

  37. Iwahashi, H., Odani, M., Ishidou, E., & Kitagawa, E. (2005). FEBS Letters, 579, 2847–2852.

    Article  CAS  Google Scholar 

  38. Basrai, M. A., Velculescu, V. E., Kinzler, K. W., & Hieter, P. (1999). Molecular and Cellular Biology, 19, 7041–7049.

    CAS  Google Scholar 

  39. Mercier, G., Berthault, N., Mary, J., Peyre, J., Antoniadis, A., Comet, J. P., et al. (2004). Nucleic Acids Research, 32, e12.

    Article  CAS  Google Scholar 

  40. Pavlidis, P., & Noble, W. S. (2001). Genome Biology, 2, RESEARCH0042.

  41. Mager, W. H., & De Kruijff, A. J. (1995). Microbiological Reviews, 59, 506–5031.

    CAS  Google Scholar 

  42. Bosl, B., Grimminger, V., & Walter, S. (2006). Journal of Structural Biology, 156, 139–148.

    Google Scholar 

  43. Toogun, O. A., Dezwaan, D. C., & Freeman, B. C. (2008). Molecular and Cellular Biology, 28, 457–467.

    Article  CAS  Google Scholar 

  44. Tutar, Y. (2006). Protein Peptide Letters, 13, 699–705.

    Article  CAS  Google Scholar 

  45. Siede, W., Allen, J. B., Elledge, S. J., & Friedberg, E. C. (1996). Journal of Bacteriology, 178, 5841–5843.

    CAS  Google Scholar 

  46. Yao, R., Zhang, Z., An, X., Bucci, B., Perlstein, D. L., Stubbe, J., et al. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 6628–6633.

    Article  CAS  Google Scholar 

  47. Benton, M. G., Somasundaram, S., Glasner, J. D., & Palecek, S. P. (2006). BMC Genomics, 7, 305.

    Article  Google Scholar 

  48. Fry, R. C., DeMott, M. S., Cosgrove, J. P., Begley, T. J., Samson, L. D., & Dedon, P. C. (2006). BMC Genomics, 7, 313.

    Article  Google Scholar 

  49. Yamaguchi, H., & Waker, A. J. (2007). Journal of Radiation Research (Tokyo), 48, 289–303.

    Article  CAS  Google Scholar 

  50. Roy, D., Guida, P., Zhou, G., Echiburu-Chau, C., & Calaf, G. M. (2008). International Journal of Molecular Medicine, 21, 627–636.

    CAS  Google Scholar 

  51. Qiu, L. M., Li, W. J., Pang, X. Y., Gao, Q. X., Feng, Y., Zhou, L. B., et al. (2003). World Journal of Gastroenterology, 9, 1450–1454.

    CAS  Google Scholar 

  52. Lee, M. W., Kim, B. J., Choi, H. K., Ryu, M. J., Kim, S. B., Kang, K. M., et al. (2007). Yeast, 24, 145–154.

    Article  CAS  Google Scholar 

  53. Martinez-Pastor, M. T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). Embo Journal, 15, 2227–2235.

    CAS  Google Scholar 

  54. Shamrock, V. J., & Lindsey, G. G. (2008). Canadian Journal of Microbiology, 54, 559–568.

    Article  CAS  Google Scholar 

  55. Lee, J., Spector, D., Godon, C., Labarre, J., & Toledano, M. B. (1999). Journal of Biological Chemistry, 274, 4537–4544.

    Article  CAS  Google Scholar 

  56. Carr, K. E., Hume, S. P., Nelson, A. C., O'Shea, O., Hazzard, R. A., & McCullough, J. S. (1996). Journal of Radiation Research (Tokyo), 37, 38–48.

    Article  CAS  Google Scholar 

  57. Horsey, E. W., Jakovljevic, J., Miles, T. D., Harnpicharnchai, P., & Woolford, J. L., Jr. (2004). RNA, 10, 813–827.

    Article  CAS  Google Scholar 

  58. Bax, R., Raue, H. A., & Vos, J. C. (2006). RNA, 12, 2005–2013.

    Article  CAS  Google Scholar 

  59. Lee, S. J., & Baserga, S. J. (1999). Molecular and Cellular Biology, 19, 5441–5452.

    CAS  Google Scholar 

  60. Singh, H., & Vadasz, J. A. (1983). International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 43, 587–597.

    Article  CAS  Google Scholar 

  61. Conconi, A., Liu, X., Koriazova, L., Ackerman, E. J., & Smerdon, M. J. (1999). Embo Journal, 18, 1387–1396.

    Article  CAS  Google Scholar 

  62. Hanna, J., & Finley, D. (2007). A proteasome for all occasions. FEBS Letters, 581, 2854–2861.

    Article  CAS  Google Scholar 

  63. Owsianik, G., Balzi, L. L., & Ghislain, M. (2002). Molecular Microbiology, 43, 1295–1308.

    Article  CAS  Google Scholar 

  64. Xie, Y., & Varshavsky, A. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 3056–3061.

    Article  CAS  Google Scholar 

  65. Yamamoto, A., Ueda, J., Yamamoto, N., Hashikawa, N., & Sakurai, H. (2007). Eukaryotic Cell, 6, 1373–1379.

    Article  CAS  Google Scholar 

  66. Marchler, G., Schuller, C., Adam, G., & Ruis, H. (1993). Embo Journal, 12, 1997–2003.

    CAS  Google Scholar 

  67. Schuller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., & Ruis, H. (1994). Embo Journal, 13, 4382–4389.

    CAS  Google Scholar 

  68. Maki, H., Saito, M., Kobayashi, T., Kawai, K., & Akaboshi, M. (1986). International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 50, 795–809.

    Article  CAS  Google Scholar 

  69. Chen, J., Derfler, B., Maskati, A., & Samson, L. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 7961–7965.

    Article  CAS  Google Scholar 

  70. Symington, L. S. (2002). Microbiology and Molecular Biology Reviews, 66, 630–670.

    Article  CAS  Google Scholar 

  71. Sung, P., Krejci, L., Van Komen, S., & Sehorn, M. G. (2003). Journal of Biological Chemistry, 278, 42729–42732.

    Article  CAS  Google Scholar 

  72. Guzder, S. N., Sung, P., Prakash, L., & Prakash, S. (1998). Journal of Biological Chemistry, 273, 31541–31546.

    Article  CAS  Google Scholar 

  73. Prakash, S., & Prakash, L. (2000). Mutation Research, 451, 13–24.

    CAS  Google Scholar 

  74. Anindya, R., Aygun, O., & Svejstrup, J. Q. (2007). Molecular Cell, 28, 386–3897.

    Article  CAS  Google Scholar 

  75. McBride, W. H., Iwamoto, K. S., Syljuasen, R., Pervan, M., & Pajonk, F. (2003). Oncogene, 22, 5755–5773.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology, based on screening and counseling by the Atomic Energy Commission. This work was carried out in part under the Visiting Researcher's Program of the Research Reactor Institute of Kyoto University and Research Project with Heavy Ions at NIRS-HIMAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Iwahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizukami-Murata, S., Iwahashi, H., Kimura, S. et al. Genome-Wide Expression Changes in Saccharomyces cerevisiae in Response to High-LET Ionizing Radiation. Appl Biochem Biotechnol 162, 855–870 (2010). https://doi.org/10.1007/s12010-009-8825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8825-3

Keywords

Navigation