Skip to main content
Log in

Bioflocculant Exopolysaccharide Production by Azotobacter indicus Using Flower Extract of Madhuca latifolia L

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficacy of Azotobacter indicus ATCC 9540 strain for production exopolysaccharide (EPS) bioflocculant was investigated. Mahua flower extract (Madhuca latifolia L), a natural substrate at the concentration of 20 g L−1, gave maximum recovery of EPS followed by sucrose and mannitol as compared to other carbon sources after 172 h. Yeast extract was found to be the most effective nitrogen source as compared to beef extract, sodium nitrate, ammonium sulfate, casein hydrolysate, and urea for the production of EPS. EPS production was increased in presence of nitrogen (5.51 g L−1) as compared to nitrogen-free medium (3.51 g L−1), and fermentation time was also reduced by 28 h. Maximum EPS production (6.10 g L−1) was found in the presence of 20 g L−1 flower extract and 0.5 g L−1 yeast extract containing Ashby’s media with 180 rpm at 30 °C at 144 h, under controlled conditions in 2.5 L fermenter using optimized medium. The isolated EPS showed cation-dependent flocculating activity. Concentration of EPS played an important role in bioflocculating activity which increased in a concentration-dependent manner up to a certain limit, with the maximum flocculation of 72% at 500 mg L−1 concentration but remained almost static after this concentration. Extracted polymer was characterized by different chemical tests, FT-IR spectroscopy, and TLC which showed presence of uronic acids, O-acetyl groups, and Orcinol with suggestive indication of alginate like polymer. This study suggests that use of M. latifolia L. flowers can be a potential alternative bioresource for production of exopolysaccharide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Roller, S. & Dea, I. C. M. (1992). Biotechnology in the production and modification of biopolymers for foods. Critical Reviews in Biotechnology, 12, 261–277.

    Article  CAS  Google Scholar 

  2. Sutherland, I. (1990). The properties and potential of microbial exopolysaccharides. Chimica Oggi, 9, 9–14.

    Google Scholar 

  3. Tchan, Y. (1984). Azotobacteriaceae. In N. R. Krig & J. G. Hit (Eds.), Bergeys manual for systematic bacteriology, vol. 1 (pp. 219–234). Baltimore: Williams and Wilkins.

    Google Scholar 

  4. Gorin, P. A. J. & Spencer, J. (1966). Extracellular alginic acid from Azotobacter vinelandii. Canadian Journal of Chemistry, 44, 993–998.

    Article  CAS  Google Scholar 

  5. Costerton, J., Cheng, K., & Greesey, G. (1987). Bacterial biofilms in nature and diseases. Annual Review of Microbiology, 41, 435–464.

    Article  CAS  Google Scholar 

  6. Dudman, W. (1971). The role of surface polysaccharides in natural environment. In I. W. Sutherland (Ed.), Surface carbohydrates of prokaryotic cell (pp. 357–414). New York: Academic.

    Google Scholar 

  7. Postgate, J. R. (1974). New advances and future potential in biological nitrogen fixation. Journal of Applied Bacteriology, 37, 183–202.

    Google Scholar 

  8. Leigh, J. A. & Coplin, D. L. (1992). Exopolysaccharides in plant-bacterial interactions. Annual Review of Microbiology, 46, 307–346.

    Article  CAS  Google Scholar 

  9. Kurane, R., Takeda, K., & Suzaki, T. (1986). Screening and characterization of microbial flocculants. Agricultural and Biological Chemistry, 50, 2301–2303.

    CAS  Google Scholar 

  10. Shih, I. L., Van, Y. T., Yeh, L. C., Lin, H. G., & Chang, Y. N. (2001). Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technology, 78, 267–272.

    Article  CAS  Google Scholar 

  11. Takeda, M., Kurane, R., Koizumi, J., & Nakamura, I. (1981). Aprotein bioflocculant produced by Rhodococcus erythropolis. Agricultural and Biological Chemistry, 55, 2663–2664.

    Google Scholar 

  12. Ashtputre, A. & Shah, A. (1995). Studies on viscous gel forming exopolysaccharides from Spingomonas paucimobilis GS1. Applied and Environmental Microbiology, 61, 1159–1162.

    Google Scholar 

  13. He, N., Li, Y., & Chen, J. (2004). Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum. Bioresource Technology, 94(1), 99–105.

    Article  CAS  Google Scholar 

  14. Mitsuda, S., Miyata, N., Hirota, T., & Kikuchi, T. (1981). High viscosity polysaccharide produced by Bacillus polymixa. Hakkokogaku, 59, 486–493.

    Google Scholar 

  15. Walter, B., Wilhelm, H. G. L., Johann, H. M., Erich. W., & Reinhard. Z. (1976). United States Patent 3988205, Publication Date: 10/26/1976, Application Number: 05/601770.

  16. Greenberg, L. & Tirpak, J. (2006). A note on the effect of gibberellic acid on Azotobacter indicus. Journal of the American Pharmaceutical Association, 49(5), 333.

    Article  Google Scholar 

  17. Mukerjee, S. (1990). Sapotaceae. In College Botany, 3, 287–288.

    Google Scholar 

  18. Miller, G. (1972). Estimation of reducing sugar. Analytical Chemistry, 31, 426.

    Article  Google Scholar 

  19. Hestrin, S. (1949). The reaction of acetylcholine and other carboxylic acid derivative with hydroxylamine, and its application. Journal of Biological Chemistry, 180, 249–261.

    CAS  Google Scholar 

  20. Blumenkratz, N. & Asboe, H. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54, 484–489.

    Article  Google Scholar 

  21. May, T. B. & Chakrabarty, A. M. (1994). Isolation and assay of Pseudomonas aeruginosa alginate: Methods in Enzymology, Vol 2 (pp. 235–303). New York: Academic.

    Google Scholar 

  22. Dubois, M., Gilles, H. Y., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Becking, J. H. (1986). Some dinitrogen fixing bacteria and relatives. In M. P. Starr, H. Stolp, H. G. Truper, A. Balows & H. G. Schlegel (Eds.), The prokaryotes (pp. 795–817). New York: Springer.

    Google Scholar 

  25. Bandaiphet, C. & Prasertsan, P. (2006). Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydrate Polymers, 66, 216–228.

    Article  CAS  Google Scholar 

  26. Deavin, L., Jarman, P., Lawson, C., Righelato, R., & Slocombe, S. (1977). The production of alginic acid by Azotobacter vinelandii in batch and continuous culture. In P. A. Sanford & A. Laskin (Eds.), Extracellular microbial polysaccharides (pp. 14–26). Washington, D.C.: American Chemical Society.

    Chapter  Google Scholar 

  27. Horan, N., Jarman, T., & Dawes, E. (1981). Effects of carbon sources and inorganic phosphate concentration on the production of alginic acid by mutant of Azotobacter vinelandii and on the enzymes involved in the biosynthesis. Geneneral Microbiology, 127, 185–191.

    Article  CAS  Google Scholar 

  28. Nakata, K. & Kurane, R. (1999). Production of an extracellular polysaccharide bioflocculant by Klebsiella pneumoniae. Bioscience, Biotechnology, and Biochemistry, 63, 2064–2068.

    Article  CAS  Google Scholar 

  29. Wong, T. (1993). Effect of Ca++ on sugar transport in Azotobacter vinelandii. Applied and Environmental Microbiology, 59, 89–92.

    CAS  Google Scholar 

  30. Evans, L. R. & Linker, A. (1973). Production and characterization of slime polysaccharides of Pseudomonas aeruginosa. Journal of Bacteriology, 116, 915.

    CAS  Google Scholar 

  31. Conti, E., Faibani, A., Regan, M., & Sutherland, I. (1994). Alginate from Pseudomonas fluorescence and P. putida; production and properties. Microbiology, 140, 1125–1132.

    Article  CAS  Google Scholar 

  32. Chen, W. P., Chen, J. Y., & CL, S. U. (1983). Production of bacterial alginate by a mutant of Azotobacter vinelandii. National Science Council Monthly, 11, 1197–1207.

    CAS  Google Scholar 

  33. Emtiazi, G., Ethemadifara, Z., & Habibib, M. H. (2004). Production of extra-cellular polymer in Azotobacter and biosorption of metal by exopolymer. African Journal of Biotechnology, 3(6), 330–333.

    CAS  Google Scholar 

  34. Brivonese, A. C. & Sutherland, I. (1989). Polymer production by mucoid strains of Azotobacter vinelandii in batch culture. Applied Microbiology and Biotechnology, 30, 97–102.

    Article  CAS  Google Scholar 

  35. Chen, W., Chen, J., Chang, S., & Su, C. (1985). Bacterial alginate produced by a mutant of Azotobacter vinelandii in batch culture. Applied and Environmental Microbiology, 49, 543–547.

    CAS  Google Scholar 

  36. Lixi, Y., Chunling, M. A., & Zehnming, C. (2006). Bioflocculant produced by Klebsiella sp. MYC and its application in the treatment of oil field produced water. Journal of Ocean University of China, 5(4), 333–338.

    Article  Google Scholar 

  37. Bingale, W. H. (1988). Transformation of A. vinelandii, UWP with a broad host range plasmid containing a cloned chromosomes nif DNA marker. Plasmid, 19, 242–250.

    Article  Google Scholar 

  38. Maccula, E. & Cowel, P. (1948). The use of glycine in the disruption of bacterial cells. Science, 107, 376–377.

    Article  Google Scholar 

  39. Vela, G. & Rosental, R. (1972). Effect of peptone on Azotobacter morphology. Bacteriology, 111, 260–266.

    CAS  Google Scholar 

  40. Page, W. & Cornish, A. (1993). A Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction hydroxybutyrate. Applied and Envion microbiology, 59(12), 4236–4244.

    CAS  Google Scholar 

  41. Cohen, G. & Johnstone, D. (1963). Acid production by Azotobacter vinelandii. Nature, 198, 211.

    Article  CAS  Google Scholar 

  42. Yang, Y., Ren, N., Wang, A., Ma, F., Gao, L., Peng, Y., et al. (2008). Use of waste fermenting liquor to produce bioflocculants with isolated strains. International Journal of Hydrogen Energy, 33, 3295–3301.

    Article  CAS  Google Scholar 

  43. Ganesh Kumar, C., Jool, H. S., Kavali, R., Choi, J. W., & Chang, C. S. (2004). Characterization of an extracellular biopolymer flocculant from a haloalkalophilic Bacillus isolate. World Journal of Microbiology & Biotechnology, 20, 837–843.

    Article  Google Scholar 

  44. Jang, J. H., Ike, M., Kim, S. M., & Fujita, M. (2001). Production of a novel bioflocculant by fed- batch culture of Citrobacter spp. Biotechnological Letters, 23, 593–597.

    Article  CAS  Google Scholar 

  45. Shimofuruya, H., Koide, A., Shirota, K., Tsujii, T., Nakamura, M., & Suzaki, J. (1996). The production of flocculating substances by Streptomyces griseus. Bioscience, Biotechnology, and Biochemistry, 60, 498–500.

    Article  CAS  Google Scholar 

  46. Fujita, M., Ike, M., Tachibana, S., Kitada, G., Kim, S. M., & Inoue, Z. (2000). Characterization of a bioflocculant produced by Citrobacter spp. TKF04 from acetic and propionic acids. Journal of Bioscience and Bioengineering, 89, 40–46.

    Article  CAS  Google Scholar 

  47. Deng, S. B., Bai, R. B., Hu, X. M., & Luo, Q. (2003). Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Applied Microbiology and Biotechnology, 60, 588–593.

    CAS  Google Scholar 

  48. Kurane, R., Hatamochi, K., Kakuna, T., & Kiyohara, M. (1994). Production of bioflocculant by Rhodococcus erythropolis s-1, grown on alcohols. Bioscience, Biotechnology and Biochemistry, 58, 428–429.

    Article  CAS  Google Scholar 

  49. Ghosh, M., Pathak, S., & Ganguli, A. (2009). Effective removal of Cryptosporidium by a novel bioflocculant. Water environment research, 81(2), 160–164.

    Article  CAS  Google Scholar 

  50. Zhang, J., Liu, Z., Wang, S., & Jiang, P. (2002). Characterization of a bioflocculant produced by the marine Myxobacterium nannocystis spp. NU-2. Applied Microbiology and Biotechnology, 59, 517–522.

    Article  CAS  Google Scholar 

  51. Lu, W. Y., Zhang, T., Zhang, D. Y., Li, C. H., Wen, J. P., & Du, L. X. (2005). A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochemical Engineering Journal, 27, 1–7.

    Article  CAS  Google Scholar 

  52. Braek, S., Grasdelem, H., & Larsen, B. (1986). Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydrate Research, 154, 239–213.

    Google Scholar 

  53. Vermani, M., Kelkar, S., & Kamat, M. (1997). Studies in exopolysaccharide production and growth of Azotobacter vinelandii MTCC2459, a plant rhizosphere isolate. Letters in Applied Microbiology, 24, 379–383.

    Article  CAS  Google Scholar 

  54. Sengha, S., Anderson, J., Hucking, J., & Dawes, A. (1984). The production of alginate by P. mendocina in batch and continuous culture. Journal of General Microbiology, 135, 795–804.

    Google Scholar 

  55. Shamala, T. (2007). Bacteriological synthesis of polyhydroxy butyrate using carbohydrate rich mahua (Madhuca sp.) flower. Microbial Research, 162, 77–81.

    Article  CAS  Google Scholar 

  56. Page, G. & Rosenthal, R. (1972). Effect of peptone on Azotobacter morphology. Journal of Bacteriology, 111, 260–266.

    Google Scholar 

  57. Hu, Y., Yan, X., Chen, W., & Huang, X. (2009). Flocculation properties of bioflocculant MBF-7 produced by Penicillium purpurogenum in kaolin suspension. International Journal of Environment and Pollution, 37(2–3), 166–176.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial assistance from University Grants Commission (UGC) and Department of Science & Technology (DST), New Delhi, in the form of project grant SVP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Electronic supplementary material

Below is the link to the electronic material.

ESM 1

(PDF 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, S.V., Salunkhe, R.B., Patil, C.D. et al. Bioflocculant Exopolysaccharide Production by Azotobacter indicus Using Flower Extract of Madhuca latifolia L. Appl Biochem Biotechnol 162, 1095–1108 (2010). https://doi.org/10.1007/s12010-009-8820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8820-8

Keywords

Navigation