Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 744–756 | Cite as

Biocatalytic Properties of a Recombinant Fusarium proliferatum Lactonase with Significantly Enhanced Production by Optimal Expression in Escherichia coli

  • Bing Chen
  • Li-Qiang Fan
  • Jian-He XuEmail author
  • Jian Zhao
  • Xian Zhang
  • Li-Ming Ouyang
Article

Abstract

The levo-lactonase gene of Fusarium proliferatum ECU2002 (EC3.1.1.25) was cloned and expressed in Escherichia coli JM109 (DE3) for biocatalytic resolution of industrially important chiral lactones, including DL-pantoyl lactone which was a key precursor to calcium d-pantothenate. By increasing the biomass concentration and lowering the inducer (isopropyl-β-d-thiogalactoside) concentration and induction temperature, the lactonase production was significantly enhanced up to 20 kU/L, which was 20 times higher than that of wild-type strain F. proliferatum ECU2002. The recombinant Fusarium lactonase was purified using immobilized metal affinity chromatography, and its SDS-PAGE revealed a molecular mass of 50 kDa for the recombinant protein, suggesting that the enzyme was a simplex protein. Furthermore, biocatalytic properties of the recombinant lactonase were investigated, including kinetic parameters, additive’s effect, and substrate specificity. The results reported in this paper provide a feasible method to make the whole cells of E. coli JM109 (DE3) expressing lactonase gene to be a highly efficient and easy-to-make biocatalyst for asymmetric synthesis of chiral compounds.

Keywords

Levo-lactonase DL-pantoyl lactone Recombinant protein Immobilized metal affinity chromatography Biocatalytic property Substrate specificity 

Notes

Acknowledgement

This research was financially supported by National Natural Science Foundation of China (grant No. 20506037 & 20773038), Ministry of Science and Technology (grant No. 2007AA02Z225 & 2009CB724706), and China National Special Fund for State Key Laboratory of Bioreactor Engineering (grant No. 2060204).

References

  1. 1.
    Takahata, H., Uchida, Y., & Momose, T. (1994). Journal of Organic Chemistry, 59, 7201–7208.CrossRefGoogle Scholar
  2. 2.
    Reddy, G. V., Sreevani, V., & Iyengar, D. S. (2001). Tetrahedron Letters, 42, 531–532.CrossRefGoogle Scholar
  3. 3.
    Kumar, P., Deshmukh, A. N., Upadhyay, R. K., & Gurjar, M. K. (2005). Tetrahedron Asymmetry, 16, 2717–2721.CrossRefGoogle Scholar
  4. 4.
    Nakagawa, A., Idogaki, H., Kato, K., Shinmyo, A., & Suzuki, T. (2006). Journal of Bioscience and Bioengineering, 101, 97–103.CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Xu, J. H., Xu, Y., & Pan, J. (2007). Applied Microbiology and Biotechnology, 75, 1087–1094.CrossRefGoogle Scholar
  6. 6.
    Onakunle, O. A., Knowles, C. J., & Bunch, A. W. (1997). Enzyme and Microbial Technology, 21, 245–251.CrossRefGoogle Scholar
  7. 7.
    Tanaka, K., Kuchiki, D., & Caira, M. R. (2006). Tetrahedron Asymmetry, 17, 1678–1683.CrossRefGoogle Scholar
  8. 8.
    Takahashi, E., Kimura, T., Kumazawa, S. United States Patent 5493063. Feb. 20, 1996.Google Scholar
  9. 9.
    Honda, K., Tsuboi, H., Minetoki, T., Nose, H., Sakamoto, K., Kataoka, M., et al. (2005). Applied Microbiology and Biotechnology, 66, 520–526.CrossRefGoogle Scholar
  10. 10.
    Kobayashi, M., Shinohara, M., Sakoh, C., Kataoka, M., & Shimizu, S. (1998). Proceedings of the National Academy of Sciences, 95, 12787–12792.CrossRefGoogle Scholar
  11. 11.
    Liu, Z. Q., Sun, Z. H., & Leng, Y. J. (2006). Journal of Agricultural and Food Chemistry, 54, 5823–5830.CrossRefGoogle Scholar
  12. 12.
    Liu, Z. Q., & Sun, Z. H. (2005). Chinese Journal of Biotechnology, 21, 390–395.Google Scholar
  13. 13.
    Liu, Z. Q., & Sun, Z. H. (2004). Biotechnology Letters, 26, 1861–1865.CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Xing, X. H., Ye, F. C., Kuang, Y., & Luo, M. F. (2007). Biochemical Engineering Journal, 34, 114–121.CrossRefGoogle Scholar
  15. 15.
    Shiloach, J., Kaufman, J., Guillard, A. S., & Fass, R. (1996). Biotechnology and Bioengineering, 49, 421–428.CrossRefGoogle Scholar
  16. 16.
    Chou, C. P. (2007). Applied Microbiology and Biotechnology, 76, 521–532.CrossRefGoogle Scholar
  17. 17.
    Riesenberg, D., & Guthke, R. (1999). Applied Microbiology and Biotechnology, 51, 422–430.CrossRefGoogle Scholar
  18. 18.
    Shin, C. S., Hong, M. S., Bae, C. S., & Lee, J. (1997). Biotechnology Progress, 13, 249–257.CrossRefGoogle Scholar
  19. 19.
    Lee, C., Sun, W. J., Burgess, B. W., Junker, B. H., Reddy, J., Buckland, B. C., et al. (1997). Journal of Industrial Microbiology and Biotechnology, 18, 260–266.CrossRefGoogle Scholar
  20. 20.
    Viitanen, M. I., Vasala, A., Neubauer, P., & Alatossava, T. (2003). Microbial Cell Factories, 2, 2.CrossRefGoogle Scholar
  21. 21.
    Shimizu, S., Kataoka, M., Shimizu, K., Hirakata, M., Sakamoto, K., & Yamada, H. (1992). European Journal of Biochemistry, 209, 383–390.CrossRefGoogle Scholar
  22. 22.
    Chen, C. S., Fujimoto, Y., Girdaukas, G., & Sih, C. J. (1982). Journal of American Chemistry Society, 104, 7294–7299.CrossRefGoogle Scholar
  23. 23.
    Taniguchi, T., Fukuba, T., Nakatsuka, S., Hayase, S., Kawatsura, M., Uno, H., et al. (2008). Journal of Organic Chemistry, 73, 3875–3884.CrossRefGoogle Scholar
  24. 24.
    Tang, Y. X., Sun, Z. H., Hua, L., Lv, C. F., Guo, X. F., & Wang, J. (2002). Process Biochemistry, 38, 545–549.CrossRefGoogle Scholar
  25. 25.
    Kataoka, M., Hirakata, M., Sakamoto, K., Yamada, H., & Shimizu, S. (1996). Enzyme and Microbial Technology, 19, 307–310.CrossRefGoogle Scholar
  26. 26.
    Yu, M. R., & Tan, T. W. (2005). Process Biochemistry, 40, 2609–2614.CrossRefGoogle Scholar
  27. 27.
    Sakamoto, K., Honda, K., Wada, K., Kita, S., Tsuzaki, K., Nose, H., et al. (2005). Journal of Biotechnology, 118, 99–106.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Bing Chen
    • 1
  • Li-Qiang Fan
    • 1
  • Jian-He Xu
    • 1
    Email author
  • Jian Zhao
    • 1
  • Xian Zhang
    • 1
  • Li-Ming Ouyang
    • 1
  1. 1.Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations