Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 707–718 | Cite as

Gene Cloning, Expression, and Characterization of a Family 51 α-l-Arabinofuranosidase from Streptomyces sp. S9

  • Pengjun Shi
  • Ning Li
  • Peilong Yang
  • Yaru Wang
  • Huiying Luo
  • Yingguo Bai
  • Bin YaoEmail author
Article

Abstract

An α-l-arabinofuranosidase gene, abf51S9, was cloned from Streptomyces sp. S9 and successfully expressed in Escherichia coli BL21 (DE3). The full-length gene consisted of 1,506 bp and encoded 501 amino acids with a calculated mass of 55.2 kDa. The deduced amino acid sequence was highly homologous with the α-l-arabinofuranosidases belonging to family 51 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by Ni-NTA affinity chromatography and subsequently characterized. The optimal pH and temperature for the recombinant enzyme were 6.0 and 60∼65 °C, respectively. The enzyme showed a broad pH range of stability, retaining over 75% of the maximum activity at pH 5.0 to 11.0. The specific activity, K m, and V max with p-nitrophenyl-α-l-arabinofuranoside as substrate were 60.0 U mg−1, 1.45 mM, and 221 μmol min−1 mg−1, respectively. Abf51S9 showed a mild but significant synergistic effect in combination with xylanase on the degradation of oat-spelt xylan and soluble wheat arabinoxylan substrates with a 1.19- and 1.21-fold increase in the amount of reducing sugar released, respectively. These favorable properties make Abf51S9 a good candidate in various industrial applications.

Keywords

α-l-Arabinofuranosidase Streptomyces sp. S9 Gene cloning and expression Synergistic action 

Notes

Acknowledgments

This work was supported by the Chinese National High Technology Research and Development Program (863 Program, Grant No. 2007AA100601) and the Chinese Agricultural Microorganism Collection and Share Program (No. 2005DKA21201).

References

  1. 1.
    Prade, R. A. (1996). Biotechnology and Genetic Engineering Reviews, 13, 101–131.Google Scholar
  2. 2.
    Polizeli, M., Rizzatti, A., Monti, R., Terenzi, H., Jorge, J., & Amorim, D. (2005). Applied Microbiology and Biotechnology, 67, 577–591.CrossRefGoogle Scholar
  3. 3.
    Coughlan, M. P., & Hazlewood, G. P. (1993). Biotechnology and Applied Biochemistry, 17, 259–289.Google Scholar
  4. 4.
    Bocchini, D. A., Alves-Prado, H. F., Baida, L. C., Roberto, I. C., Gomes, E., & Da-Silva, R. (2002). Process Biochemistry, 38, 727–731.CrossRefGoogle Scholar
  5. 5.
    Kebir, H., Dupont, C., & Morosoli, R. (2000). Biochimica et Biophysica Acta, 1491, 177–184.Google Scholar
  6. 6.
    Saha, B. C. (2000). Biotechnology Advances, 18, 403–423.CrossRefGoogle Scholar
  7. 7.
    Saha, B. C., Dien, B. S., & Bothast, R. J. (1998). Applied Biochemistry and Biotechnology, 72, 115–125.CrossRefGoogle Scholar
  8. 8.
    Henrissat, B., & Davies, G. (1997). Current Opinion in Structural Biology, 7, 637–644.CrossRefGoogle Scholar
  9. 9.
    Fritz, M., Ravanal, M. C., Braet, C., & Eyzaguirre, J. (2008). Mycological Research, 112, 933–942.CrossRefGoogle Scholar
  10. 10.
    Schwarz, W., Bronnenmeier, K., Krause, B., Lottspeich, F., & Staudenbauer, W. (1995). Applied Microbiology and Biotechnology, 43, 856–860.CrossRefGoogle Scholar
  11. 11.
    Degrassi, G., Vindigni, A., & Venturi, V. (2003). Journal of Biotechnology, 101, 69–79.CrossRefGoogle Scholar
  12. 12.
    Shallom, D., Belakhov, V., Solomon, D., Gilead-Gropper, S., Baasov, T., Shoham, G., et al. (2002). FEBS Letters, 514, 163–167.CrossRefGoogle Scholar
  13. 13.
    Margolles, A., & de los Reyes-Gavilán, C. G. (2003). Applied and Environmental Microbiology, 69, 5096–5103.CrossRefGoogle Scholar
  14. 14.
    Manin, C., Shareek, F., Morosoli, R., & Kluepfel, D. (1994). The Biochemical journal, 302, 443–449.Google Scholar
  15. 15.
    Tajana, E., Fiechter, A., & Zimmermann, W. (1992). Applied and Environmental Microbiology, 58, 1447–1450.Google Scholar
  16. 16.
    Tsujibo, H., Takada, C., Wakamatsu, Y., Kosaka, M., Tsuji, A., Miyamoto, K., et al. (2002). Bioscience, Biotechnology, and Biochemistry, 66, 434–438.CrossRefGoogle Scholar
  17. 17.
    Li, N., Meng, K., Wang, Y., Shi, P., Luo, H., Bai, Y., et al. (2008). Applied Microbiology and Biotechnology, 80, 231–240.CrossRefGoogle Scholar
  18. 18.
    Li, N., Yang, P., Wang, Y., Luo, H., Meng, K., Wu, N., et al. (2008). Journal of Microbiology and Biotechnology, 18, 410–416.Google Scholar
  19. 19.
    Bottoli, A. P., Kertesz-Chaloupková, K., Boulianne, R. P., Granado, J. D., Aebi, M., & Kües, U. (1999). Journal of Microbiological Methods, 35, 129–141.CrossRefGoogle Scholar
  20. 20.
    Laemmli, U. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  21. 21.
    Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  22. 22.
    Raweesri, P., Riangrungrojana, P., & Pinphanichakarn, P. (2008). Bioresource Technology, 99, 8981–8986.CrossRefGoogle Scholar
  23. 23.
    Rahman, A. K. M. S., Sugitani, N., Hatsu, M., & Takamizawa, K. (2003). Canadian Journal of Microbiology, 49, 58–64.CrossRefGoogle Scholar
  24. 24.
    Vincent, P., Shareck, F., Dupont, C., Morosoli, R., & Kluepfel, D. (1997). The Biochemical Journal, 322, 845–852.Google Scholar
  25. 25.
    Matsuo, N., Kaneko, S., Kuno, A., Kobyashi, H., & Kusakabe, I. (2000). The Biochemical Journal, 346, 9–15.CrossRefGoogle Scholar
  26. 26.
    Sørensen, H. R., Pedersen, S., Viks-Nielsen, A., & Meyer, A. S. (2005). Enzyme and Microbial Technology, 36, 773–784.CrossRefGoogle Scholar
  27. 27.
    Birgisson, H., Fridjonsson, O., Bahrani-Mougeot, F. K., Hreggvidsson, G. O., Kristjansson, J. K., & Mattiasson, B. (2004). Biotechnology Letters, 26, 1347–1351.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Pengjun Shi
    • 1
  • Ning Li
    • 1
    • 2
  • Peilong Yang
    • 1
  • Yaru Wang
    • 1
  • Huiying Luo
    • 1
  • Yingguo Bai
    • 1
  • Bin Yao
    • 1
    Email author
  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations