Skip to main content
Log in

Glucose Oxidase-dextran Conjugates with Enhanced Stabilities Against Temperature and pH

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multipoint covalent bonding of glucose oxidase (EC 1.1.3.4) to hydrophilic natural polymer dextran and optimization of procedures to obtain, with enhanced temperature and pH stabilities, were studied. Purified enzyme was conjugated with various molecular weight dextrans (17.5, 75, and188 kD) in a ratio of 20:1, 10:1, 1:1, 1:5, 1:10, 1:15, and 1:20. After 1 h of incubation at pH 7, the activities of purified enzyme and conjugates were determined at different temperatures (25°C, 30°C, 35°C, 40°C, 50°C, 60°C, 70°C, and 80°C), and the results were evaluated for thermal resistance. Increases in temperature from 25°C to 50°C did not change the activities of the conjugates. The conjugate, which was prepared with 75 kDa dextran in a molar ratio of 1:5, showed the highest thermal resistance and even the activity still remains at 80°C at pH 7.0. This conjugate also displayed activity in a wide pH range (pH 4.0–7.0) at high temperatures. Conjugate, which was synthesized with 75 kDa dextran in a molar ratio of 1:5, appears to be feasible and useful for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Betancor, L., Fuantes, M., Dellamora-Ortiz, G., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., et al. (2005). Journal of Molecular Catalysis. B Enzymatic, 32, 97–101.

    Article  CAS  Google Scholar 

  2. de la Casa, R. M., Guisán, J. M., Sánchez-Montero, J. M., & Sinisterra, J. V. (2002). Enzyme and Microbial Technology, 32, 30–40.

    Article  Google Scholar 

  3. Abian, O., Wilson, L., Mateo, C., Fernández-Lorente, G., Palomo, J. M., Fernández-Lafuente, R., et al. (2004). Journal of Molecular Catalysis. B Enzymatic, 19–20, 295–303.

    Google Scholar 

  4. Longo, M. A., & Combes, D. (1999). Journal of Chemical Technology and Biotechnology, 74, 25–32.

    Article  CAS  Google Scholar 

  5. Christakopoulos, P., Kourentzi, E., Hatzinikolou, D. G., Claeyssens, M., Kekos, D., & Macris, B. J. (1998). Carbohydrate Research, 314, 95–99.

    Article  CAS  Google Scholar 

  6. Lopez-Serrano, P., Cao, L., van Rantwijk, F., & Sheldon, R. A. (2002). Biotechnological Letters, 24, 1379–1383.

    Article  CAS  Google Scholar 

  7. Sheldon, R. A., Schoevaart, R., & van Langen, L. M. (2005). Biocatalysis and Biotransformation, 23(3/4), 141–147.

    Article  CAS  Google Scholar 

  8. Mislovicova, D., Michalkova, E., & Vikartovska, A. (2007). Process Biochemistry, 42, 704–709.

    Article  CAS  Google Scholar 

  9. Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Fuentes, M., Fernández-Lafuente, R., et al. (2004). Journal of Biotechnology, 110, 201–207.

    Article  CAS  Google Scholar 

  10. Fuentes, M., Segura, R. L., Abian, O., Betancor, L., Hidalgo, A., Mateo, C., et al. (2004). Proteomics, 4, 2602–2607.

    Article  CAS  Google Scholar 

  11. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisán, J. M., Fernández-Lafuente, R., & Mateo, C. (2006). Journal of Biotechnology, 125, 85–94.

    Article  CAS  Google Scholar 

  12. Irazoqui, G., Giacomini, C., Batista-Viera, F., & Brena, B. M. (2007). Journal of Molecular Catalysis B Enzymatic, 46, 43–51.

    Article  CAS  Google Scholar 

  13. Gil, E. C., Colarte, A. I., EI Ghzaoi, A., Durand, D., Delarbe, J. L., & Battaille, B. (2008). European Journal of Pharmaceutics and Biopharmaceutics, 68, 319–329.

    Article  CAS  Google Scholar 

  14. Karmarkar, S., Garber, R., Kluza, J., & Koberda, M. (2006). Journal of Pharmaceutical and Biomedical Analysis, 41, 1260–1267.

    Article  CAS  Google Scholar 

  15. Zakhartsev, M., & Momeu, C. (2007). Journal of Chromatography B, 858, 151–158.

    Article  CAS  Google Scholar 

  16. Simpson, C., Jordan, J., Gardiner, N. S., & Whiteley, C. (2007). Protein Expression and Purification, 51, 260–266.

    Article  CAS  Google Scholar 

  17. Hecht, H. J., Kalisz, H. M., Hendle, J. H., & Schmid, R. D. (1993). Journal of Molecular Biology, 229, 153–172.

    Article  CAS  Google Scholar 

  18. Malherbe, D. F., Du Toit, M., Cordero, R. R., Otero, P., van Rensburg, I., & Pretorius, S. (2003). Applied Microbiology and Biotechnology, 61, 502–511.

    CAS  Google Scholar 

  19. Wei, Y., Feng, X., Chen, X., Hou, W., & Zhu, J. J. (2008). Biosensors and Bioelectronics, 23, 925–931.

    Article  Google Scholar 

  20. Zhu, M., Jiang, Z., & Jing, W. (2005). Sensors and Actuators B, 110, 382–389.

    Article  Google Scholar 

  21. Topcu Sulak, M., Gokdogan, O., Gulce, A., & Gulce, H. (2006). Biosensors and Bioelectronics, 21, 1719–1726.

    Article  CAS  Google Scholar 

  22. Bullen, R. A., Arnot, T. C., & Lakeman, J. B. (2006). Biosensors and Bioelectronics, 21, 2015–2045.

    CAS  Google Scholar 

  23. Sacco, D., Bonneaux, F., & Dellacherie, E. (1988). Journal of Biological Macromolecules, 10, 305–310.

    Article  CAS  Google Scholar 

  24. Deshpande, S. S., & Rocco, R. M. (1994). Food Technology, 8, 146–150.

    Google Scholar 

  25. Park, E. H., Shin, Y. M., Lim, Y. Y., Kwon, T. H., Kim, D. H., & Yang, M. S. (2000). Journal of Biotechnology, 81, 35–44.

    Article  CAS  Google Scholar 

  26. Dai, G., Li, J., & Jiang, L. (2002). Biointerfaces, 24, 171–176.

    Article  CAS  Google Scholar 

  27. Ye, H. (2006). Analytical Biochemistry, 356, 76–85.

    Article  CAS  Google Scholar 

  28. Dilgimen, A. S., Mustafaeva, Z., Demchenco, M., Kaneko, T., Osada, Y., & Mustafaev, M. (2001). Biomaterials, 22, 2383–2392.

    Article  CAS  Google Scholar 

  29. Mislovicova, D., Masarova, J., Bucko, M., & Gemeiner, P. (2006). Enzyme and Microbial Technology, 39, 579–585.

    Article  CAS  Google Scholar 

  30. Haouz, A., Twist, C., Zentz, C., de Kersabiec, A.-M., Pin, S., & Alpert, B. (1998). Chemical Physics Letters, 294, 197–203.

    Article  CAS  Google Scholar 

  31. Khatun Haq, S., Ahmad, F., & Hasan Khan, R. (2003). Biochemical and Biophysical Research Communications, 303, 685–692.

    Article  CAS  Google Scholar 

  32. Yoshimoto, M., Sato, M., Wang, S., Fukunaga, K., & Nakao, K. (2006). Biochemical Engineering Journal, 30, 158–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from T.R. Prime Ministry State Planning Organization (project number 25-DPT-07-04-01) and Yıldız Technical University BAPK (The Production of Medical Biosensors, project number 27-07-04-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melda Altikatoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altikatoglu, M., Basaran, Y., Arioz, C. et al. Glucose Oxidase-dextran Conjugates with Enhanced Stabilities Against Temperature and pH. Appl Biochem Biotechnol 160, 2187–2197 (2010). https://doi.org/10.1007/s12010-009-8812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8812-8

Keywords

Navigation