Skip to main content
Log in

A Law of Mutation: Power Decay of Small Insertions and Small Deletions Associated with Human Diseases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Indels in evolutionary studies are rapidly decayed obeying a power law. The present study analyzed the length distribution of small insertions and deletions associated with human diseases and confirmed that the decay pattern of these small mutations is similar to that of indels when the mutation datasets are large enough. The describable decay pattern of somatic mutations may have application in the evaluation of varied penetrance of different mutations and in association study of gene mutation with carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kamb, A. (2003). Mutation load, functional overlap, and synthetic lethality in the evolution and treatment of cancer. Journal of Theoretical Biology, 223, 205–213.

    Article  CAS  Google Scholar 

  2. Sommer, S. S. (1994). Does cancer kill the individual and save the species? Human Mutation, 3, 166–169.

    Article  CAS  Google Scholar 

  3. Temin, H. M. (1988). Evolution of cancer genes as a mutation-driven process. Cancer Research, 48, 1697–1701.

    CAS  Google Scholar 

  4. Hughes, A. L. (2008). Near neutrality: leading edge of the neutral theory of molecular evolution. Annals of the New York Academy of Sciences, 1133, 162–179.

    Article  Google Scholar 

  5. Pfeifer, G. P., & Besaratinia, A. (2009). Mutational spectra of human cancer. Human Genetics, 24. (Epub ahead of print)

  6. Ott, J., & Hoh, J. (2001). Statistical multilocus methods for disequilibrium analysis in complex traits. Human Mutation, 17, 285–288.

    Article  CAS  Google Scholar 

  7. White, P. S., Kwok, P. Y., Oefner, P., & Brookes, A. J. (2001). 3rd international meeting on single nucleotide polymorphism and complex genome analysis: SNPs: ‘some notable progress’. European Journal of Human Genetics, 9, 316–318.

    Article  CAS  Google Scholar 

  8. Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., et al. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928–933.

    Article  CAS  Google Scholar 

  9. Ball, E. V., Stenson, P. D., Abeysinghe, S. S., Krawczak, M., Cooper, D. N., & Chuzhanova, N. A. (2005). Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Human Mutation, 26, 205–213.

    Article  CAS  Google Scholar 

  10. Chen, J. M., Chuzhanova, N., Stenson, P. D., Férec, C., & Cooper, D. N. (2005). Complex gene rearrangements caused by serial replication slippage. Human Mutation, 26, 125–134.

    Article  CAS  Google Scholar 

  11. Chuzhanova, N. A., Anassis, E. J., Ball, E. V., Krawczak, M., & Cooper, D. N. (2003). Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Human Mutation, 21, 28–44.

    Article  CAS  Google Scholar 

  12. Scaringe, W. A., Li, K., Gu, D., Gonzalez, K. D., Chen, Z., Hill, K. A., et al. (2008). Somatic microindels in human cancer: the insertions are highly error-prone and derive from nearby but not adjacent sense and antisense templates. Human Molecular Genetics, 17, 2910–2918.

    Article  CAS  Google Scholar 

  13. Gonzalez, K. D., Hill, K. A., Li, K., Scaringe, W. A., Wang, J. C., Gu, D., et al. (2007). Somatic microindels: analysis in mouse soma and comparison with the human germline. Human Mutation, 28, 69–80.

    Article  CAS  Google Scholar 

  14. Gu, D., Scaringe, W. A., Li, K., Saldivar, J. S., Hill, K. A., Chen, Z., et al. (2007). Database of somatic mutations in EGFR with analyses revealing indel hotspots but no smoking-associated signature. Human Mutation, 28, 760–770.

    Article  CAS  Google Scholar 

  15. Lunter, G., Rocco, A., Mimouni, N., Heger, A., Caldeira, A., & Hein, J. (2008). Uncertainty in homology inferences: assessing and improving genomic sequence alignment. Genome Research, 18, 298–309.

    Article  CAS  Google Scholar 

  16. Gibbs, R. A., Weinstock, G. M., Metzker, M. L., Muzny, D. M., Sodergren, E. J., Scherer, S., et al. (2004). Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 428, 493–521.

    Article  CAS  Google Scholar 

  17. Chang, M. S., & Benner, S. A. (2004). Empirical analysis of protein insertions and deletions determining parameters for the correct placement of gaps in protein sequence alignments. Journal of Molecular Biology, 341, 617–631.

    Article  CAS  Google Scholar 

  18. Gu, X., & Li, W. H. (1995). The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. Journal of Molecular Evolution, 40, 464–473.

    Article  CAS  Google Scholar 

  19. Cartwright, R. A. (2006). Logarithmic gap costs decrease alignment accuracy. BMC Bioinformatics, 7, 527.

    Article  Google Scholar 

  20. Kim, J., & Sinha, S. (2007). Indelign: a probabilistic framework for annotation of insertions and deletions in a multiple alignment. Bioinformatics, 23, 289–297.

    Article  CAS  Google Scholar 

  21. Lunter, G. (2007). Probabilistic whole-genome alignments reveal high indel rates in the human and mouse genomes. Bioinformatics, 23, i289–i296.

    Article  CAS  Google Scholar 

  22. Yamane, K., Yano, K., & Kawahara, T. (2006). Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Research, 13, 197–204.

    Article  CAS  Google Scholar 

  23. Denver, D. R., Morris, K., Lynch, M., & Thomas, W. K. (2004). High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature, 430, 679–682.

    Article  CAS  Google Scholar 

  24. Lunter, G., Ponting, C. P., & Hein, J. (2006). Genome-wide identification of human functional DNA using a neutral indel model. PLoS Computational Biology, 2, e5.

    Article  Google Scholar 

  25. Halpern, A. L., & Bruno, W. J. (1998). Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. Molecular Biology and Evolution, 15, 910–917.

    CAS  Google Scholar 

  26. Cartwright, R. A. (2009). Problems and solutions for estimating indel rates and length distributions. Molecular Biology and Evolution, 26, 473–480.

    Article  CAS  Google Scholar 

  27. Zhang, Z., & Gerstein, M. (2003). Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Research, 31, 5338–5348.

    Article  CAS  Google Scholar 

  28. Li, K. (2006). Small insertions and deletions is revealed in association with the number of inserted or deleted nucleotides. J Nanhua University, 34(1–2), 9.

    Google Scholar 

  29. Li, K., Xiao, L., Yin, Y. F., & Zhang, J. (Oct 9-13, 2006) How to associate the somatic mutations and a specific cancer. 56th ASHG, New Orleans, USA.

  30. Taylor, M. S., Ponting, C. P., & Copley, R. R. (2004). Occurrence and consequences of coding sequence insertions and deletions in mammalian genomes. Genome Research, 14, 555–566.

    Article  CAS  Google Scholar 

  31. Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F., Jr., Nelson, C. E., Kim, D. H., et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 250, 1233–1238.

    Article  CAS  Google Scholar 

  32. Donehower, L. A. (1996). The p53-deficient mouse: a model for basic and applied cancer studies. Seminars in Cancer Biology, 7, 269–278.

    Article  CAS  Google Scholar 

  33. Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991). p53 mutations in human cancers. Science, 253, 49–53.

    Article  CAS  Google Scholar 

  34. Sjöblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebt to Dr. Gabriel Gutiérrez at Departamento de Genética, Universidad de Sevilla, Sevilla, Spain for proofreading this manuscript. This paper is partially supported by Department of Personnel Jiangsu province “Liu Da Ren Cai Gao Feng” grant (07-B-033), and The National Natural Science Foundation of China (No. 30970877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Xiao, L., Yin, Y. et al. A Law of Mutation: Power Decay of Small Insertions and Small Deletions Associated with Human Diseases. Appl Biochem Biotechnol 162, 321–328 (2010). https://doi.org/10.1007/s12010-009-8793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8793-7

Keywords

Navigation