Skip to main content
Log in

Ethanol Production from Sugarcane Bagasse Hydrolysate Using Pichia stipitis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 °C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L−1 h−1. The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L−1 h−1. The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Conab (Companhia Nacional de Abastecimento). Retrieved September 2009 from www.conab.gov.br.

  2. Cenbio (Centro Nacional de Referência em Biomassa). Retrieved August 2003 from www.cenbio.org.br.

  3. Fapesp (Fundação de Amparo a Pesquisa do Estado de São Paulo). Propriedades do bagaço da cana-de-açúcar. Revista Pesquisa FAPESP, 30ª ed., Abril 1998.

  4. Sun, J. X., Sun, X. F., Zhao, H., & Sun, R. C. (2004). Polymer Degradation and Stability, 84, 331–339.

    Article  CAS  Google Scholar 

  5. Selman-Housein, G., López, M. A., Ramos, O., Carmona, E. R., Arencibia, A. D., Menéndez, E., et al. (2000). Developments in Plant Genetics and Breeding, 5, 189–193.

    Article  CAS  Google Scholar 

  6. Baudel, H. M., Zaror, C., & Abreu, C. A. M. (2005). Industrial Crops and Products, 21, 309–315.

    Article  CAS  Google Scholar 

  7. Cerqueira Leite, R. C., Leal, M. R. L. V., Cortez, L. A. B., Griffin, W. M., & Scandiffio, M. I. G. (2009). Energy, 34, 655–661.

    Article  Google Scholar 

  8. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresource Technology, 74, 69–80.

    Article  CAS  Google Scholar 

  9. Aguilar, R., Ramírez, J. A., Garrote, G., & Vásquez, M. (2002). Journal of Food Engineering, 55, 304–318.

    Article  Google Scholar 

  10. Carvalho, W., Batista, M. A., Canilha, L., Santos, J. C., Converti, A., & Silva, S. S. (2004). Journal of Chemical Technology and Biotechnology, 79, 1308–1312.

    Article  CAS  Google Scholar 

  11. Silva, S. S., Matos, Z. R., & Carvalho, W. (2005). Biotechnology Progress, 21, 1449–1452.

    Article  CAS  Google Scholar 

  12. Felipe, M. G. A. (2004). In B. C. Saha & K. Hayashi (Eds.), Lignocellulose biodegradation, ADC Symposium series 889. Washington: American Chemical Society, pp. 300–315.

  13. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  14. Carvalho, W., Santos, J. C., Canilha, L., Almeida e Silva, J. B., Felipe, M. G. A., Mancilha, I. M., et al. (2004). Process Biochemistry, 39, 2135–2141.

    Article  CAS  Google Scholar 

  15. Eken-Saraçoglu, N., & Arslan, Y. (2000). Biotechnological Letters, 22, 855–858.

    Article  Google Scholar 

  16. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Biotechnology Progress, 17, 287–293.

    Article  CAS  Google Scholar 

  17. Lee, W. G., Lee, J. S., Shin, C. S., Park, S. C., Chang, H. N., & Chang, Y. K. (1999). Applied Biochemistry and Biotechnology, 77–79, 547–559.

    Article  Google Scholar 

  18. Mussatto, S. I., & Roberto, I. C. (2001). Biotechnological Letters, 23, 1681–1684.

    Article  CAS  Google Scholar 

  19. Carvalho, W., Canilha, L., Mussatto, S. I., Dragone, G., Morales, M. L. V., & Solenzal, A. I. N. (2004). Journal of Chemical Technology and Biotechnology, 79, 863–868.

    Article  Google Scholar 

  20. Villarreal, M. L. M., Prata, A. M. R., Felipe, M. G. A., & Almeida e Silva, J. B. (2006). Enzyme Microbial Technology, 40, 17–24.

    Article  CAS  Google Scholar 

  21. Alves, L. A., Felipe, M. G. A., Almeida e Silva, J. B., Silva, S. S., & Prata, A. M. R. (1998). Applied Biochemistry and Biotechnology, 70-72, 89–98.

    Article  CAS  Google Scholar 

  22. Canilha, L., Almeida e Silva, J. B., & Solenzal, A. I. N. (2004). Process Biochemistry, 39, 1909–1912.

    Article  CAS  Google Scholar 

  23. Browning, B. L. (1967). Method of wood chemistry. New York: Wiley.

    Google Scholar 

  24. Nigam, J. N. (2002). Journal of Biotechnology, 97, 107–116.

    Article  CAS  Google Scholar 

  25. Hahn-Hägerdal, B., Jeppsson, H., Olsson, L., & Mohagheghi, A. (1994). Applied Microbiology and Biotechnology, 41, 62–72.

    Google Scholar 

  26. Nigam, J. N. (2001). Journal of Biotechnology, 87, 17–27.

    Article  CAS  Google Scholar 

  27. Nilvebrant, N. O., Reimann, A., Larsson, S., & Jonsson, L. J. (2001). Applied Biochemistry and Biotechnology, 91–93, 35–49.

    Article  Google Scholar 

  28. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2005). Process Biochemistry, 40, 1215–1223.

    Article  CAS  Google Scholar 

  29. Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Bioresource Technology, 98, 1947–1950.

    Article  CAS  Google Scholar 

  30. Karimi, K., Emtiazi, G., & Taherzadeh, M. J. (2006). Process Biochemistry, 41, 653–658.

    Article  CAS  Google Scholar 

  31. Cheng, K. K., Cai, B. Y., Zhang, J. A., Ling, H. Z., Zhou, Y. J., Ge, J. P., et al. (2008). Biochemical Engineering Journal, 38, 105–109.

    Article  CAS  Google Scholar 

  32. Larsson, S., Reimann, A., Nilvebrant, N., & Jönsson, L. J. (1999). Applied Biochemistry and Biotechnology, 77–79, 91–103.

    Article  Google Scholar 

  33. Gupta, R., Sharma, K. K., & Kuhad, R. C. (2009). Bioresource Technology, 100, 1214–1220.

    Article  CAS  Google Scholar 

  34. Sreenath, H. K., & Jeffries, T. W. (2000). Bioresource Technology, 72, 253–260.

    Article  CAS  Google Scholar 

  35. Marques, S., Alves, L., Roseiro, J. C., & Girio, F. M. (2008). Biomass Bioenergy, 32, 400–406.

    Article  CAS  Google Scholar 

  36. Silva, J. P. A. (2007). Master dissertation, Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, São Paulo, Brazil.

  37. Roberto, I. C., Lacis, L. S., Barbosa, M. F. S., & Mancilha, I. M. (1991). Process Biochemistry, 26, 15–21.

    Article  CAS  Google Scholar 

  38. Telli-Okur, M., & Eken-Saraçoglu, N. (2008). Bioresource Technology, 99, 2162–2169.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Canilha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canilha, L., Carvalho, W., de Almeida Felipe, M.d. et al. Ethanol Production from Sugarcane Bagasse Hydrolysate Using Pichia stipitis . Appl Biochem Biotechnol 161, 84–92 (2010). https://doi.org/10.1007/s12010-009-8792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8792-8

Keywords

Navigation