Skip to main content
Log in

Light Regime Characterization in an Airlift Photobioreactor for Production of Microalgae with High Starch Content

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The slow development of microalgal biotechnology is due to the failure in the design of large-scale photobioreactors (PBRs) where light energy is efficiently utilized. In this work, both the quality and the amount of light reaching a given point of the PBR were determined and correlated with cell density, light path length, and PBR geometry. This was made for two different geometries of the downcomer of an airlift PBR using optical fiber technology that allows to obtain information about quantitative and qualitative aspects of light patterns. This is important since the ability of microalgae to use the energy of photons is different, depending on the wavelength of the radiation. The results show that the circular geometry allows a more efficient light penetration, especially in the locations with a higher radial coordinate (r) when compared to the plane geometry; these observations were confirmed by the occurrence of a higher fraction of illuminated volume of the PBR for this geometry. An equation is proposed to correlate the relative light intensity with the penetration distance for both geometries and different microalgae cell concentrations. It was shown that the attenuation of light intensity is dependent on its wavelength, cell concentration, geometry of PBR, and the penetration distance of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gordon, J. M., & Polle, J. E. W. (2007). Applied Microbiology and Biotechnology, 76, 969–975.

    Article  CAS  Google Scholar 

  2. Benemann, J. R., Tillett, D. M., & Weissman, J. C. (1987). Trends in Biotechnology, 5, 47–53.

    Article  CAS  Google Scholar 

  3. Morita, M., Watanabe, Y., & Saiki, H. (2001). Biotechnology and Bioengineering, 74(6), 476–475.

    Article  Google Scholar 

  4. Csogör, Z., Herrenbauer, M., Schmidt, K., & Posten, C. (2001). Journal of Applied Phycology, 13, 325–333.

    Article  Google Scholar 

  5. Merchuk, J. C., Garcia-Camacho, F., & Molina-Grima, E. (2007). Chemical and Biochemical Engineering Q, 21(4), 345–355.

    CAS  Google Scholar 

  6. Rabe, A. E., & Benoit, A. (1962). Biotechnology and Bioengineering, 4, 337–390.

    Article  Google Scholar 

  7. Frohlich, B. T., Webster, I. A., Ataai, M. M., & Shuler, M. L. (1983). Biotechnology and Bioengineering Symposium, 13, 331–350.

    CAS  Google Scholar 

  8. Erickson, L. E., & Lee, H. Y. (1986). Algal biomass technologies. In W. Barclay & R. P. McIntosh (Eds.), An interdisciplinary perspective (p. 197). Berlin: Nova Hedwigia.

    Google Scholar 

  9. Grima, E. M., Fernández, F. G. A., Camacho, F. G., & Chisti, Y. (1999). Journal of Biotechnology, 70, 231–247.

    Article  Google Scholar 

  10. Wu, X., & Merchuk, J. C. (2004). Chemical Engineering Science, 59, 2899–2912.

    Article  CAS  Google Scholar 

  11. Cornet, J. F., Dussap, C. G., & Gros, J. B. (1998). Advances in Biochemical Engineering/Biotechnology, 59, 155–224.

    Google Scholar 

  12. Pruvost, J., Pottier, L., & Legrand, J. (2006). Chemical Engineering Science, 61, 4476–4489.

    Article  CAS  Google Scholar 

  13. Douskova, I., Doucha, J., Machat, J., Novak, P., Umysova, D., Vitova, M., & Zachleder V (2008) Proceedings of the International Conference: Bioenergy: Challenges and Opportunities, 6th/9th April 2008, Guimarães, Portugal

  14. Ranjbar, R., Inoue, R., Katsuda, T., Yamaji, H., & Katoh, S. (2008). Journal of Bioscience and Bioengineering, 106(2), 204–207.

    Article  CAS  Google Scholar 

  15. Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Chemical Engineering and Processing, 48(1), 306–310.

    CAS  Google Scholar 

  16. Laws, E. A. (1980). Limnology and Oceanography, 25, 455–473.

    Google Scholar 

  17. Ree, G. Y., & Gotham, I. J. (1981). Limnology and Oceanography, 26, 649–659.

    Article  Google Scholar 

  18. Suh, I. S., & Lee, S. B. (2003). Biotechnology and Bioengineering, 82, 2.

    Article  CAS  Google Scholar 

  19. Yun, Y.-S., & Park, J. M. (2001). Applied Microbiology and Biotechnology, 55, 765–770.

    Article  CAS  Google Scholar 

  20. Janssen, M., Tramper, J., Mur, L. R., & Wijffels, R. H. (2003). Biotechnology and Bioengineering, 81(2), 193–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia through B. Fernandes grant SFRH/BD/44724/2008 and G. Dragone grant SFRH/BPD/44935/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António A. Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, B.D., Dragone, G.M., Teixeira, J.A. et al. Light Regime Characterization in an Airlift Photobioreactor for Production of Microalgae with High Starch Content. Appl Biochem Biotechnol 161, 218–226 (2010). https://doi.org/10.1007/s12010-009-8783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8783-9

Keywords

Navigation