Skip to main content
Log in

Toward Plant Cell Wall Degradation Under Thermophilic Condition: A Unique Microbial Community Developed Originally from Swine Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A unique thermophilic microbial community developed initially from swine waste was investigated in this study. Cellulase activities were observed when this community was inoculated to media containing either cellulose or carboxymethylcellulose at 57 °C. Through constructing a clone library for the 16S ribosomal DNA, it was revealed that this community was mainly composed of three genera: Thermobacillus, Brevibacillus, and Anoxybacillus. New findings regarding the thermo- and pH stability of crude cellulases secreted by Brevibacillus sp. JXL were presented. Recent study on the growth characteristics of Anoxybacillus sp. 527 was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Demain, A. L., Newcomb, M., & Wu, J. H. D. (2005). Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 69, 124–154.

    Article  CAS  Google Scholar 

  2. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., & Stokes B. J. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. In Oak Ridge National Research Laboratory Report TM-2005, under contract DOE/GO-1022005-2135, Oak Ridge, TN.

  3. Wyman, C. E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24, 189–226.

    Article  Google Scholar 

  4. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.

    Article  CAS  Google Scholar 

  5. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advance, 24, 452–481.

    Article  CAS  Google Scholar 

  6. Irwin, D., Leathers, T. D., Greene, R. V., & Wilson, D. B. (2003). Corn fiber hydrolysis by Thermobifida fusca extracellular enzymes. Applied Microbiology and Biotechnology, 61, 352–358.

    CAS  Google Scholar 

  7. Suchardová, O., Krumphanzl, V., & Panos, J. (1981). Physiology of growth of a mixed culture of thermophilic bacteria on cellulose under microaerophilic conditions. Biotechnology Letters, 3, 47–550.

    Article  Google Scholar 

  8. Blackburn, J. W., Liang, Y., & Das, D. (2009). Biohydrogen from complex carbohydrate wastes as feedstocks- cellulose degraders from a unique series enrichment. International Journal of Hydrogen Energy, 34(17), 7428–7434. doi:10.1016/j.ijhydene.2009.04.014.

    Article  CAS  Google Scholar 

  9. Liang, Y., Yesuf, J., Schmitt, S., Bender, K., & Bozzola, J. (2009). Study of cellulases from a newly-isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. Journal of Industrial Microbiology and Biotechnology, 36, 961–970.

    Article  CAS  Google Scholar 

  10. Liang, Y., Feng, Z., & Yesuf, J. (2009). Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Applied Biochemistry and Biotechnology, doi:10.1007/s12010-009-8677-x.

  11. Atlas, R. M. (2004). Handbook of microbiological media (3rd ed.). Boca Raton: CRC.

    Google Scholar 

  12. Ghose, T. K. (1987). Measurement of cellulase activities. Pure & Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  13. Watanabe, K., Nagao, N., Yamamoto, S., Toda, T., & Kurosawa, N. (2007). Thermobacillus composti sp. nov., a moderately thermophilic bacterium isolated from a composting reactor. International Journal of Systematic and Evolutionary Microbiology, 57, 1473–1477.

    Article  CAS  Google Scholar 

  14. Touzel, J. P., O’Donohue, M., Debeire, P., Samain, E., & Breton, C. (2000). Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. International Journal of Systematic and Evolutionary Microbiology, 50, 315–320.

    CAS  Google Scholar 

  15. Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., & Demain, A. L. (1982). Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Applied and Environmental Microbiology, 43, 1125–1132.

    CAS  Google Scholar 

  16. Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., et al. (2000). Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 2109–2117.

    CAS  Google Scholar 

  17. Pikuta, E., Cleland, D., & Tang, J. (2003). Aerobic growth of Anoxybacillus pushchinoensis K1(T): Emended descriptions of A. pushchinoensis and the genus Anoxybacillus. International Journal of Systematic and Evolutionary Microbiology, 53, 1561–1562.

    Article  CAS  Google Scholar 

  18. Gul-Guven, R., Guven, K., Poli, A., & Nicolaus, B. (2008). Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman. Journal of General Applied Microbiology, 54, 327–334.

    Article  CAS  Google Scholar 

  19. Atanassova, M., Derekova, A., Mandeva, R., Sjoholm, C., & Kambourova, M. (2008). Anoxybacillus bogrovensis sp. nov., a novel thermophilic bacterium isolated from a hot spring in Dolni Bogrov, Bulgaria. International Journal of Systematic and Evolutionary Microbiology, 58, 2359–2362.

    Article  CAS  Google Scholar 

  20. Kevbrin, V. V., Zengler, K., Lysenko, A. M., & Wiegel, J. (2005). Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. Extremophiles, 9, 391–398.

    Article  CAS  Google Scholar 

  21. De Clerck, E., Rodriguez-Diaz, M., Vanhoutte, T., Heyrman, J., Logan, N. A., & De Vos, P. (2004). Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. International Journal of Systematic and Evolutionary Microbiology, 54, 941–946.

    Article  Google Scholar 

  22. Poli, A., Esposito, E., Lama, L., Orlando, P., Nicolaus, G., de Appolonia, F., et al. (2006). Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Systematic and Applied Microbiology, 29, 300–307.

    Article  CAS  Google Scholar 

  23. Derekova, A., Sjoholm, C., Mandeva, R., & Kambourova, M. (2007). Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). Extremophiles, 11, 577–583.

    Article  Google Scholar 

  24. Dulger, S., Demirbag, Z., & Belduz, A. O. (2004). Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 54, 1499–1503.

    Article  CAS  Google Scholar 

  25. Schäffer, C., Franck, W. L., Scheberl, A., Kosma, P., McDermott, T. R., & Messner, P. (2004). Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. International Journal of Systematic and Evolutionary Microbiology, 54, 2361–2368.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. James Blackburn for providing the bacterial source sample for this work. This research is supported by SIUC’s new faculty startup funds. Financial support from Material Technology Center at SIUC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanna Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Yesuf, J. & Feng, Z. Toward Plant Cell Wall Degradation Under Thermophilic Condition: A Unique Microbial Community Developed Originally from Swine Waste. Appl Biochem Biotechnol 161, 147–156 (2010). https://doi.org/10.1007/s12010-009-8780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8780-z

Keywords

Navigation