Skip to main content
Log in

A Process to Produce Penicillin G Acylase by Surface-Adhesion Fermentation Using Mucor griseocyanus to Obtain 6-Aminopenicillanic Acid by Penicillin G Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of extracellular and mycelia-associated penicillin G acylase (maPGA) with Mucor griseocyanus H/55.1.1 by surface-adhesion fermentation using Opuntia imbricata, a cactus, as a natural immobilization support was studied. Enzyme activity to form 6-aminopencillanic acid (6-APA) from penicillin G was assayed spectrophotometrically. The penicillin G hydrolysis to 6-APA was evaluated at six different times using PGA samples recovered from the skim milk medium at five different incubation times. Additionally, the effect of varying the penicillin G substrate concentration level on the PGA enzyme activity was also studied. The maximum reaction rate, V max, and the Michaelis constant, K M, were determined using the Michaelis–Menten model. The maximum levels for maPGA and extracellular activity were found to be 2,126.50 international unit per liter (IU/l; equal to 997.83 IU/g of support) at 48 h and 755.33 IU/l at 60 h, respectively. Kinetics of biomass production for total biomass showed a maximum growth at 60 h of 3.36 and 2.55 g/l (equal to 0.012 g of biomass per gram of support) for the immobilized M. griseocyanus biomass. The maPGA was employed for the hydrolysis of penicillin G to obtain 6-APA in a batch reactor. The highest quantity of 6-APA obtained was 226.16 mg/l after 40-min reaction. The effect of substrate concentration on maPGA activity was evaluated at different concentrations of penicillin G (0–10 mM). K M and V max were determined to be 3.0 × 10−3 M and 4.4 × 10−3 mM/min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thykaer, J., & Nielsen, J. (2003). Metab Eng, 5, 56–69.

    Article  CAS  Google Scholar 

  2. Shewale, J. G., & Sivaraman, H. (1989). Process Biochem, 24, 146–154.

    CAS  Google Scholar 

  3. Souza, V. R., Silva, A. C. G., Pinotti, L. M., Selistre-Araújo, H. S., & Camargo-Giordano, R. L. J. (2005). Braz Arch Biol Technol, 48, 105–111.

    Google Scholar 

  4. Chisti, Y., & Moo-Young, M. (1991). In V. Moses & R. E. Cape (Eds.), Biotechnology: The science and the business (pp. 167–209). New York: Harwood.

    Google Scholar 

  5. Savidge, T. A. (1984). In E. J. Vandamme (Ed.), Biotechnology of industrial antibiotics-drugs and pharmaceutical sciences (Vol. 2, pp. 172–224). New York: Dekker.

    Google Scholar 

  6. Shewale, J. G., Deshpande, B. S., Sudhakaran, V. K., & Ambedkar, S. S. (1990). Process Biochem, 25, 97–103.

    CAS  Google Scholar 

  7. Matsumoto, K. (1993). In A. Tanaka, T. Tosa & T. Kobayashi (Eds.), Production of 6-APA, 7-ACA and 7-ADCA by immobilized penicillin and cephalosporin amidases (pp. 67–88). New York: Dekker.

    Google Scholar 

  8. Martínez Hernández, J. L., Ilyina, A., Domínguez Malfavón, L., & Dustet, M. J. C. (2003). Vestn Mosk U KHIM, 44, 53–56.

    Google Scholar 

  9. Huber, F. M., Chauvette, R. R., & Jackson, B. G. (1972). In E. H. Flynn (Ed.), Preparative methods for 7-aminocephalosporanic acid and 6-aminopenicillanic acid, cephalosporins and penicillins (pp. 27–33). New York: Academic.

    Google Scholar 

  10. Vandamme, E. J. (1988). In M. Moo-Young (Ed.), Bioreactor immobilized enzymes and cells: fundamentals and applications (pp. 261–268). New York: Elsevier.

    Google Scholar 

  11. Kallenberg, A. I., van Rantwijk, F., & Sheldon, R. A. (2005). Adv Synth Catal, 347, 905–926.

    Article  CAS  Google Scholar 

  12. Iqbal, M., & Saeed, A. (2005). Lett Appl Microbiol, 40, 178–182.

    Article  CAS  Google Scholar 

  13. Becerra-Jiménez, J. M. E., Martínez-Hernández, J. L., Rodríguez-Martínez, J., & Ilyina, A. (2006). Mosc Univ Chem Bull, 61, 36–43.

    Google Scholar 

  14. Ilyina, A., Huerta-Guel, P. J., Martínez-Hernández, J. L., Rodríguez-Martínez, J., & Gorokhovsky, A. (2008). J Mol Catal B Enzym, 51, 1–9.

    Article  CAS  Google Scholar 

  15. Raimbault, M. (1998). Elect J Biotech, 1, 1–15. available from http://www.ejb.org. Accessed June 10, 2009.

    Google Scholar 

  16. Aguilar, C. N., Gutiérrez-Sánchez, G., Prado-Barragán, L. A., Rodríguez-Herrera, R., Martínez-Hernandez, J. L., & Contreras-Esquivel, J. C. (2008). Am J Bioch Biotech, 4, 354–366.

    Article  CAS  Google Scholar 

  17. Fergucs, L. (1969). Mycol, 61, 120–129.

    Article  Google Scholar 

  18. Tanseym, R. (1971). Arcltiv Fiir Mikrobiol, 77, 1–1I.

    Article  Google Scholar 

  19. Somkuti, G. A. (1974). J Gener Microbiol, 81, 1–6.

    CAS  Google Scholar 

  20. Villena, G. K., & Gutiérrez-Correa, M. (2003). Rev Perú Biol, 10, 78–87.

    Google Scholar 

  21. Balasingham, J., Warburton, D., Dunhill, P., & Lilly, M. (1972). Biochim Biophys Acta, 7, 276–250.

    Google Scholar 

  22. Axelsson, A., & Persson, B. (1987). Appl Biochem Biotechnol, 16, 231–250.

    Google Scholar 

  23. Réczey, K., Stalbrand, H., Hahn-Hägerdal, B., & Tjerneld, F. (1992). Appl Microbiol Biotechnol, 38, 393–397.

    Article  Google Scholar 

  24. Nagy, V., Toke, E. R., Keong, L. C., Szatzker, G., Ibrahim, D., Omar, I. C., et al. (2006). J Mol Catal B Enzym, 39, 141–148.

    Article  CAS  Google Scholar 

  25. Fernandes, M. L. M., Saad, E. B., Meira, J. A., Ramos, L. P., Mitchell, D. A., & Krieger, N. (2007). Mol Catal B Enzym, 44, 8–13.

    Article  CAS  Google Scholar 

  26. Domínguez-Malfavón, L. (2003). MS thesis, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico.

  27. Savidge, T. A., & Cole, M. (1975). In J. H. Hash (Ed.), Methods in enzymology: penicillin acylase (bacterial) (Vol. 43, pp. 705–721). London: Academic.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Universidad Autónoma de Coahuila (Mexico) for its financial support for this work. M. Mata-Gómez thanks CONACYT (Mexican Council of Science and Technology) for his fellowship to conduct this study. The authors are also grateful for the valuable help of Siong N.G. for reviewing this paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Martínez-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Hernández, J.L., Mata-Gómez, M.A., Aguilar-González, C.N. et al. A Process to Produce Penicillin G Acylase by Surface-Adhesion Fermentation Using Mucor griseocyanus to Obtain 6-Aminopenicillanic Acid by Penicillin G Hydrolysis. Appl Biochem Biotechnol 160, 2045–2053 (2010). https://doi.org/10.1007/s12010-009-8768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8768-8

Keywords

Navigation