Skip to main content
Log in

Enhancement of Lovastatin Production by Supplementing Polyketide Antibiotics to the Submerged Culture of Aspergillus terreus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Feedback inhibition existed in lovastatin biosynthesis from Aspergillus terreus. Exogenous lovastatin and other different polyketide antibiotics biosynthesized by polyketide synthase were supplemented to the cultures of A. terreus to investigate their influences on lovastatin production. Supplementing exogenous lovastatin of 100 mg l−1 at the early stage of fermentation and the fast stage of its biosynthesis resulted in decreases of 76.4% and 20% in final lovastatin production, respectively. However, the fungal cell growth was not affected; the growing cycle was only prolonged in the submerged cultivation. Separate supplementation of the five kinds of polyketide antibiotics such as tylosin, erythromycin, tetracycline, daunorobin, and rifamycin to the cultures resulted in increases of about 20~25% in the final lovastatin production. Especially, supplementing tylosin of 50 mg l−1 at the beginning of lovastatin biosynthesis led to the final lovastatin production of 952.7 ± 24.3 mg l−1, which was improved by 42% and 22% compared with that produced in the control and the original culture, respectively. These results are helpful to understand the regulations on lovastatin biosynthesis and improve the final desired metabolite contents in many antibiotics production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alberts, A. W. (1990). Cardiology, 77, 14–21.

    Article  Google Scholar 

  2. Alberts, A. W. Chen, J. Kuron, G. et al. (1980). Proceeding of the National Academy of Sciences USA, 77, 3957–3961.

    Article  CAS  Google Scholar 

  3. Endo, A. Kuroda, M. & Tsujita, Y. (1976). Journal of Antibiotics, 29, 1346–1348.

    CAS  Google Scholar 

  4. Endo, A. (1979). Journal of Antibiotics, 32, 852–854.

    CAS  Google Scholar 

  5. Kennedy, J. Auclair, K. Kendrew, S. G. Park, C. & Vederas, J. C. (1999). Science, 284, 1368–1372.

    Article  CAS  Google Scholar 

  6. Hendrickson, L. Davis, C. R. Roach, C. Nguyen, D. K. Aldrich, T. McAda, P. C. et al. (1999). Chemistry & Biology, 6, 429–439.

    Article  CAS  Google Scholar 

  7. Hutchinson, C. R. Kennedy, J. Park, C. Kendrew, S. G. Auclair, K. & Vederas, J. C. (2000). Antonie van Leeuwenhoek, 78, 287–295.

    Article  CAS  Google Scholar 

  8. Sorensen, J. L. Auclair, K. Kennedy, J. Hutchinson, C. R. & Vederas, J. C. (2003). Org. Biomol. Chem. 1, 50–59.

    Article  CAS  Google Scholar 

  9. Xie, X. Watanabe, K. Wojcicki, W. A. Wang, C. C. & Tang, Y. (2006). Chemistry & Biology, 13, 1161–1169.

    Article  CAS  Google Scholar 

  10. Casas López, J. L. Rodríguez Porcel, E. M. Vilches Ferrón, M. A. et al. (2004). Journal of Industrial Microbiology & Biotechnology, 31, 48–50.

    Article  Google Scholar 

  11. Demain, A. L. & Adrio, J. L. (2008). Progress in Drug Research, 65, 252–289.

    Google Scholar 

  12. Butler, A. R. Flint, S. A. & Cundliffe, E. (2001). Microbiology, 147, 795–801.

    CAS  Google Scholar 

  13. Fish, S. A. & Cundliffe, E. (1997). Microbiology, 143, 3871–3876.

    Article  CAS  Google Scholar 

  14. Jacobsen, J. R. Hutchinson, C. R. Cane, D. E. & Khosla, C. (1997). Science, 277, 367–369.

    Article  CAS  Google Scholar 

  15. Kumar, M. S. Kumar, P. M. Sarnaik, H. M. & Sadhukhan, A. K. (2000). Journal of Microbiological Methods, 40, 99–104.

    Article  CAS  Google Scholar 

  16. Szakács, G. Morovján, G. & Tengerdy, R. P. (1998). Biotechnology Letters, 20, 411–415.

    Article  Google Scholar 

  17. Kumar, M. S. Jana, S. K. Senthil, V. et al. (2000). Process Biochemistry, 36(363), 368.

    Google Scholar 

  18. Jia, Z. H. Zhang, X. L. & Cao, X. J. (2008). Chemical Engineering (in Chinese), 36(5), 51–54.

    CAS  Google Scholar 

  19. Michael, D. G. & Joel, B. Y. (1985). Journal of Bacteriology, 162, 704–707.

    Google Scholar 

  20. Konfino, M. Deltcheva, S. & Mindjova, K. (1993). J Planar Chromatogr -Modern TLC, 6(5), 404–406.

    CAS  Google Scholar 

  21. Sorensen, J. (2003). Edmonton, Alberta, Canada: PhD Thesis, University of Alberta.

  22. Sanchez, S. & Demain, A. L. (2002). Enzyme and Microbial Technology, 31, 895–906.

    Article  CAS  Google Scholar 

  23. Lai, L. S. T. Hung, C. S. & Lo, C. C. (2007). Journal of Bioscience and Bioengineering, 104(1), 9–13.

    Article  CAS  Google Scholar 

  24. Bonnarme, P. Gillet, B. Sepulchre, A. M. Role, C. Beloeil, J. C. & Ducrocq, C. (1995). Journal of Bacteriology, 177(12), 3573–3578.

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Key Research Program sponsored by Bureau of Education of Shaanxi Province in China (99JK08) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Zhang or Xuejun Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Zhang, X., Zhao, Y. et al. Enhancement of Lovastatin Production by Supplementing Polyketide Antibiotics to the Submerged Culture of Aspergillus terreus . Appl Biochem Biotechnol 160, 2014–2025 (2010). https://doi.org/10.1007/s12010-009-8762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8762-1

Keywords

Navigation