Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 641–653 | Cite as

Kinetic Evaluation of Aminoethylisothiourea on Mushroom Tyrosinase Activity

  • Shu-Bai Li
  • Hua-Li Nie
  • Hai-Tao Zhang
  • Yong Xue
  • Li-Min ZhuEmail author
Article

Abstract

This study demonstrates that aminoethylisothiourea (AET), a potent inhibitor of inducible nitric oxide synthase, is an irreversible competitive inhibitor of mushroom tyrosinase by chelation to the active site of tyrosinase when l-3,4-dihydroxyphenylalanine was assayed spectrophotometrically. The spectrophotometric recordings of the inhibition of tyrosinase by AET were characterized by the presence of a lag period prior to the attainment of an inhibited steady-state rate. The lag period corresponded to the time in which AET was reacting with the enzymatically generated o-quinone. Increasing AET concentrations provoked longer lag periods as well as a concomitant decrease in the tyrosinase activity. Both lag period and steady-state rate were dependent on AET, substrate, and tyrosinase concentrations. The inhibition of diphenolase activity of tyrosinase by AET showed positive kinetic cooperativity which arose from the protection of both substrate and o-quinone against inhibition by AET. The UV-visible spectrum of a mixture of tyrosinase and AET exhibited a characteristic shoulder peak ascribed to the chelation of AET to the active site of tyrosinase. Moreover, the presence of copper ions only partially prevented but not reverted mushroom tyrosinase inhibition when CuSO4 was added to the assay medium on tyrosinase activity.

Keywords

Aminoethylisothiourea Mushroom tyrosinase Irreversible inhibition Cooperativity Copper chelation 

Notes

Acknowledgments

The present investigation was supported by Natural Science Foundation of China (50773009), Esquel Group, Science and Technology Commission of Shanghai Municipality (08JC1400600), and “111 Project” from Ministry of Education of China (B07024).

References

  1. 1.
    Seo, S.-Y. Sharma, V. K. & Sharma, N. (2003). Journal of Agricultural and Food Chemistry, 51, 2837–2853.CrossRefGoogle Scholar
  2. 2.
    Rodríguez-López, J. N. Tudela, J. Varón, R. García-Carmona, F. & García-Cánovas, F. (1992). Journal of Biological Chemistry, 267, 3801–3810.Google Scholar
  3. 3.
    Sánchez-Ferrer, Á. Rodríguez-López, J. N. García-Cánovas, F. & García-Carmona, F. (1995). Biochimica et Biophysica Acta. Protein Structure and Molecular Enzymology, 1247, 1–11.CrossRefGoogle Scholar
  4. 4.
    Fenoll, L. G. Peñalver, M. J. Rodríguez-López, J. N. Varón, R. García-Cánovas, F. & Tudela, J. (2004). International Journal of Biochemistry & Cell Biology, 36, 235–246.CrossRefGoogle Scholar
  5. 5.
    Ando, H. Kondoh, H. Ichihashi, M. & Hearing, V. J. (2007). Journal of Investigative Dermatology, 127, 751–761.CrossRefGoogle Scholar
  6. 6.
    Wang, S.-D. Luo, W.-C. Xu, S.-J. & Ding, Q. (2005). Pesticide Biochemistry and Physiology, 82, 52–58.CrossRefGoogle Scholar
  7. 7.
    Szabó, C. Ferrer-Sueta, G. Zingarelli, B. Southan, G. J. Salzman, A. L. & Radi, R. (1997). Journal of Biological Chemistry, 272, 9030–9036.CrossRefGoogle Scholar
  8. 8.
    Martínez, M. C. Randriamboavonjy, V. Stoclet, J.-C. & Andriantsitohaina, R. (2001). Biochemical Pharmacology, 61, 109–118.CrossRefGoogle Scholar
  9. 9.
    Vauzour, D. Vafeiadou, K. & Spencer, J. P. E. (2007). Biochemical and Biophysical Research Communications, 362, 340–346.CrossRefGoogle Scholar
  10. 10.
    da Cruz-Vieira, I. & Fatibello-Filho, O. (1999). Analytica Chimica Acta, 399, 287–293.CrossRefGoogle Scholar
  11. 11.
    Espín, J. C. & Wichers, H. J. (2001). Biochimica et Biophysica Acta, 1544, 289–300.Google Scholar
  12. 12.
    Criton, M. & Mellay-Hamon, V. Le. (2008). Bioorganic & Medicinal Chemistry Letters, 18, 3607–3610.CrossRefGoogle Scholar
  13. 13.
    Li, B. Huang, Y. & Paskewitz, S. M. (2006). FEBS Letters, 580, 1877–1882.CrossRefGoogle Scholar
  14. 14.
    Kubo, I. Nihei, K. & Shimizu, K. (2004). Bioorganic & Medicinal Chemistry, 12, 5343–5347.CrossRefGoogle Scholar
  15. 15.
    Chen, Q.-X. Song, K.-K. Qiu, L. Liu, X.-D. Huang, H. & Guo, H.-Y. (2005). Food Chemistry, 91, 269–274.CrossRefGoogle Scholar
  16. 16.
    Muňoz, J. L. García-Molina, F. Varón, R. Rodríguez-López, J. N. García-Cánovas, F. & Tudela, J. (2006). Analytical Biochemistry, 351, 128–138.CrossRefGoogle Scholar
  17. 17.
    Casañola-Martín, G. M. Marrero-Ponce, Y. Khan, M. T. H. Ather, A. Sultan, S. Torrens, F. et al. (2007). Bioorganic & Medicinal Chemistry, 15, 1483–1503.CrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  19. 19.
    Khym, J. X. Doherty, D. G. & Shapira, R. (1958). Journal of the American Chemical Society, 80, 3342–3349.CrossRefGoogle Scholar
  20. 20.
    Agrup, G. Hansson, C. Rorsman, H. & Rosengren, E. (1982). Archives of Dermatological Research, 272, 103–115.CrossRefGoogle Scholar
  21. 21.
    Saito, S. & Kawabata, J. (2004). Journal of Agricultural and Food Chemistry, 52, 8163–8168.CrossRefGoogle Scholar
  22. 22.
    Awad, H. M. Boersma, M. G. Boeren, S. Van Bladeren, P. J. Vervoort, J. & Rietjens, I. M. C. M. (2003). Chemical Research in Toxicology, 16, 822–831.CrossRefGoogle Scholar
  23. 23.
    García-Molina, F. Peñalver, M. J. Fenoll, L. G. Rodríguez-López, J. N. Varón, R. García-Cánovas, F. et al. (2005). Journal of Molecular Catalysis. B, Enzymatic, 32, 185–192.CrossRefGoogle Scholar
  24. 24.
    Cornish-Bowden, A. (2004). Fundamentals of enzyme kinetics (3rd ed.). London: Portland.Google Scholar
  25. 25.
    Koshland, D. E. & Hamadani, K. (2002). Journal of Biological Chemistry, 277, 46841–46844.CrossRefGoogle Scholar
  26. 26.
    Hofmeyr, J.-H. S. & Cornish-Bowden, A. (1997). Computer Applications in the Biosciences, 13, 377–385.Google Scholar
  27. 27.
    Espín, J. C. & Tudela, J. (1994). Biochemical Journal, 299, 29–35.Google Scholar
  28. 28.
    Duggleby, R. G. (1994). Biochimica et Biophysica Acta, 1209, 238–240.Google Scholar
  29. 29.
    Segel, I. H. (1976). Enzyme kinetics. New York: Wiley.Google Scholar
  30. 30.
    Lerch, K. (1981). In H. Sigel (Ed.), Metal ions in biological systems. New York: Marcel Dekker.Google Scholar
  31. 31.
    Kim, Y.-J. Chung, J. E. Kurisawa, M. Uyama, H. & Kobayashi, S. (2004). Biomacromolecules, 5, 474–479.CrossRefGoogle Scholar
  32. 32.
    Kermasha, S. Bao, H. & Bisakowski, B. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 929–938.CrossRefGoogle Scholar
  33. 33.
    Moridani, M. Y. Scobie, H. Salehi, P. & O’Brien, P. J. (2001). Chemical Research in Toxicology, 14, 841–848.CrossRefGoogle Scholar
  34. 34.
    Kubo, I. & Kinst-Hori, I. (1999). Journal of Agricultural and Food Chemistry, 47, 4121–4125.CrossRefGoogle Scholar
  35. 35.
    Kubo, I. Kinsy-Hori, I. Chaudhuri, S. K. Kubo, Y. Sánchez, Y. & Ogura, T. (2000). Bioorganic & Medicinal Chemistry, 8, 1749–1755.CrossRefGoogle Scholar
  36. 36.
    Kahn, V. & Andrawis, A. (1984). Phytochemistry, 24, 905–908.CrossRefGoogle Scholar
  37. 37.
    Bertoldi, M. Gonsalvi, M. & Voltattorni, C. B. (2001). Biochemical and Biophysical Research Communications, 284, 90–93.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Shu-Bai Li
    • 1
  • Hua-Li Nie
    • 1
  • Hai-Tao Zhang
    • 1
  • Yong Xue
    • 1
  • Li-Min Zhu
    • 1
    Email author
  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina

Personalised recommendations