Skip to main content
Log in

Production and Characterization of Cellulose by Acetobacter sp. V6 Using a Cost-Effective Molasses–Corn Steep Liquor Medium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to reduce of the manufacturing cost of bacterial cellulose (BC), BC production by Acetobacter sp. V6 was investigated in shaking culture using molasses and corn steep liquor (CSL) as the sole carbon and nitrogen sources, respectively. The highest BC production was obtained with Ca3(PO4)2-treated molasses. Maximum BC yield (2.21 ± 0.04 g/l) was obtained at 5% (w/v) total sugar in molasses. In improved medium containing molasses and CSL, BC production was observed in the medium after 1 day of incubation and increased rapidly thereafter with maximum yield (3.12 ± 0.03 g/l) at 8 days. This value was approximately twofold higher than the yield in the complex medium. Physical properties of BC from the complex and molasses media were studied using Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffractometer. By FT-IR, all the BC were found to be of cellulose type І, the same as typical native cellulose. The relative crystallinity of BC produced in the complex and molasses media were 83.02 and 67.27%, respectively. These results suggest that molasses and CSL can be useful low-cost substrates for BC production by Acetobacter sp. V6 without supplementation with expensive nitrogen complexes such as yeast extract and polypeptone, leading to the reduction in the production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ross, P., Mayer, R., & Benziman, M. (1991). Microbiological Review, 55, 35–58.

    CAS  Google Scholar 

  2. Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Journal of Materials Science, 35, 261–270.

    Article  CAS  Google Scholar 

  3. Okiyama, A., Shirae, H., Kano, H., & Yamanaka, S. (1992). Food Hydrocolloids, 6, 471–477.

    Article  CAS  Google Scholar 

  4. Coucheron, D. H. (1991). Journal of Bacteriology, 173, 5723–5731.

    CAS  Google Scholar 

  5. Rias, B., Moldes, A. B., Dominguez, J. M., & Parajo, J. C. (2004). International Journal of Food Microbiology, 97, 93–98.

    Article  Google Scholar 

  6. Chao, Y., Sugano, Y., & Shoda, M. (2001). Applied Microbiology and Biotechnology, 55, 673–679.

    Article  CAS  Google Scholar 

  7. Oikawa, T., Ohtori, T., & Ameyama, M. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 331–332.

    Article  CAS  Google Scholar 

  8. Son, H. J., Kim, H. G., Kim, K. K., Kim, H. S., Kim, Y. G., & Lee, S. J. (2003). Bioresource Technology, 86, 215–219.

    Article  Google Scholar 

  9. Roukas, T. (1996). Journal of Food Engineering, 27, 87–96.

    Article  Google Scholar 

  10. Calabia, B. P., & Tokiwa, Y. (2007). Biotechnology Letters, 29, 1329–1332.

    Article  CAS  Google Scholar 

  11. Pazouki, M., Felse, P. A., Sinha, J., & Panda, T. (2000). Bioprocess Engineering, 22, 353–361.

    Article  CAS  Google Scholar 

  12. Solaiman, D. K. Y., Ashby, R. D., Zerkowski, J. A., & Foglia, T. A. (2007). Biotechnology Letters, 29, 1341–1347.

    Article  CAS  Google Scholar 

  13. Kona, R. P., Qureshi, N., & Pai, J. S. (2001). Bioresource Technology, 78, 123–126.

    Article  CAS  Google Scholar 

  14. Son, H. J., Lee, O. M., Kim, Y. G., & Lee, S. J. (2000). Korean Journal of Applied Microbiology and Biotechnology, 28, 134–138.

    CAS  Google Scholar 

  15. Heo, M. S., & Son, H. J. (2002). Biotechnology and Applied Biochemistry, 36, 41–45.

    Article  CAS  Google Scholar 

  16. Valla, S., & Kjosbakken, J. (1982). Journal of General Microbiology, 128, 1401–1408.

    CAS  Google Scholar 

  17. Roukas, T., & Kotzekidou, P. (1997). Enzyme and Microbial Technology, 21, 273–276.

    Article  CAS  Google Scholar 

  18. Schramm, M., & Hestrin, S. (1954). Journal of General Microbiology, 11, 123–129.

    CAS  Google Scholar 

  19. Segal, L., Creely, J., Martin, A., & Conrad, C. (1959). Textile Research Journal, 29, 786–794.

    Article  CAS  Google Scholar 

  20. Chaplin, M. F., & Kennedy, J. F. (1986). Carbohydrate analysis: a practical approach. Washington DC: IRL.

    Google Scholar 

  21. Schramm, M., Gromet, Z., & Hestrin, S. (1957). Nature, 179, 28–29.

    Article  CAS  Google Scholar 

  22. Bae, S., & Shoda, M. (2004). Biotechnology Progress, 20, 1366–1371.

    Article  CAS  Google Scholar 

  23. Bae, S., & Shoda, M. (2005). Applied Microbiology and Biotechnology, 67, 45–51.

    Article  CAS  Google Scholar 

  24. Lazaridou, A., Roukas, T., Biliaderis, C. G., & Vaikousi, H. (2002). Enzyme and Microbial Technology, 31, 122–132.

    Article  CAS  Google Scholar 

  25. Noro, N., Sugano, Y., & Shoda, M. (2004). Applied Microbiology and Biotechnology, 64, 199–205.

    Article  CAS  Google Scholar 

  26. Marechal, Y., & Chanzy, H. (2000). Journal of Molecular Structure, 523, 183–196.

    Article  CAS  Google Scholar 

  27. Oh, S. Y., Yoo, D. I., Shin, Y., & Kim, H. C. (2005). Carbohydrate Research, 340, 2376–2391.

    Article  CAS  Google Scholar 

  28. Sturcova, A., His, I., Apperley, D. C., Sugiyama, J., & Jarvis, M. C. (2004). Biomacromolecules, 5, 1333–1339.

    Article  CAS  Google Scholar 

  29. Sugiyama, J., Persson, J., & Chanzy, H. (1991). Macromolecules, 24, 2461–2466.

    Article  CAS  Google Scholar 

  30. Nelson, M. L., & O'Connor, R. T. (1964). Journal of Applied Polymer Science, 8, 1311–1324.

    Article  CAS  Google Scholar 

  31. Jung, R., Kim, Y., & Jin, H. J. (2007). Textile Science and Engineering, 44, 130–133.

    CAS  Google Scholar 

  32. Uhlin, K. I., Atalla, R. H., & Thompson, N. S. (1995). Cellulose, 2, 129–144.

    Article  CAS  Google Scholar 

  33. Keshk, S., & Sameshima, K. (2006). Applied Microbiology and Biotechnology, 72, 291–296.

    Article  CAS  Google Scholar 

  34. Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Cellulose, 5, 187–200.

    Article  CAS  Google Scholar 

  35. Iwata, T., Indrarti, L., & Azuma, J. (1998). Cellulose, 5, 215–228.

    Article  CAS  Google Scholar 

  36. Yamamoto, H., Horii, F., & Hirai, A. (1996). Cellulose, 3, 229–242.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by 2008 Joint Research Center of PNU-Fraunhofer IGB Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Joo Son.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HI., Lee, OM., Jeong, JH. et al. Production and Characterization of Cellulose by Acetobacter sp. V6 Using a Cost-Effective Molasses–Corn Steep Liquor Medium. Appl Biochem Biotechnol 162, 486–497 (2010). https://doi.org/10.1007/s12010-009-8759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8759-9

Keywords

Navigation