Skip to main content
Log in

Preventive Effect of Low Molecular Weight Glycosaminoglycan from Amussium pleuronectus (Linne) on Oxidative Injury and Cellular Abnormalities in Isoproterenol-Induced Cardiotoxicity in Wistar Rats

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work explores suspicious consequence of low molecular weight glycosaminoglycan (LMW-GAG) on oxidative stress and cellular abnormalities in isoproterenol (ISO)-induced myocardial infarction in an experimental model. Group-III male Wistar rats (140 ± 10 g) were administrated by ISO (85 mg ISO/ml subcutaneously (SC) injected at the last two days of a 2–week period). Group-IV rats were treated LMW-GAG plus ISO (300 μg/day per rat SC for 1 week followed by 85 mg/kg ISO on the end last two days of the 2 - weeks). Untreated control (Group-I) and LMW-GAG drug control (Group-II) were also included. Serum and tissue lactate dehydrogenase, aminotransferases, and creatine kinase activities were increased in ISO group, which were normalized by LMW-GAG pretreatment rats. Antioxidant enzymes – superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities and non-enzymatic enzyme reduced glutathione (GSH) were decreased in the ISO induced rats, and this was increased by LMW-GAG pretreatment. Increased level of thiobarbituric acid reactive substances (TBARS) in plasma and the heart of ISO treated rats; pre s.c. injected with LMW-GAG to ISO-induced rats decreased the levels of TBARS. Histological examination revealed that the ISO-induced deleterious changes in the heart tissues were offset by LMW-GAG treatment. LMW-GAG affords considerable protection to the tissues challenged by cardiotoxicity, evidenced by its correction and restoration of serum and tissue indices of injury, to normalcy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Deepa, P. R., & Varalakshmi, P. (2003). Chem Biol Intr, 146, 201–210.

    Article  CAS  Google Scholar 

  2. Arumugam, M., & Shanmugam, A. (2004). Ind J Exp Biol, 42, 529–532.

    CAS  Google Scholar 

  3. Mohanty, I., Arya, D. S., Dinda, A., Talwar, K. K., Joshi, S., & Gupta, S. K. (2004). Basic Clin Pharmacol Toxicol, 94, 184–190.

    CAS  Google Scholar 

  4. McCord, J. M. (1988). Free Radic Biol Med, 4, 9–14.

    Article  CAS  Google Scholar 

  5. Walenga, J. M., Michal, K., Hoppersteadt, D., Wood, J. J., Robinson, J. A., & Bick, R. L. (1999). Clin Appl Thromb Hemost, 5, 76–84.

    Article  Google Scholar 

  6. Nakahama, M., Murakami, T., Kusachi, S., Naito, I., Takeda, K., Chnishi, H., et al. (2000). J Mol Cardiol, 32, 1087–1100.

    Article  CAS  Google Scholar 

  7. Saravanan, R., & Shanmugam, A. (2009). Appl Biochem Biotechnol, doi:10.1007/s12010-008-8498-3 (In press).

  8. Rajadurai, M., & Prince, M. (2006). J Biochem Mol Toxicol, 20, 191–197.

    Article  CAS  Google Scholar 

  9. Okinaka, S., Kumogai, H., Ebashi, S., Sugita, H., Momoi, H., Toyakura, Y., et al. (1961). Arch Neurol, 4, 520–525.

    CAS  Google Scholar 

  10. King, J. (1965). In D. Van (Ed.), Practical clinical enzymology (pp. 191–208). London: Nostrand Company Limited.

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). J Biol Chem, 193, 265–275.

    CAS  Google Scholar 

  12. Hogberg, J., Larson, R. E., Kristoferson, A., & Orrenius, A. (1974). Biochem Biophys Res Commun, 56, 836–842.

    Article  CAS  Google Scholar 

  13. Devasagayam, T. P. A. (1986). Biochem Biophys Acta, 876, 507–514.

    CAS  Google Scholar 

  14. Marklund, S., & Marklund, G. (1974). Eur J Biochem, 47, 469–474.

    Article  CAS  Google Scholar 

  15. Rotruck, J. T., Pope, A. L., & Ganther, H. E. (1973). Sci, 179, 588–590.

    Article  CAS  Google Scholar 

  16. Sinha, A. K. (1972). Anal Biochem, 47, 389–395.

    Article  CAS  Google Scholar 

  17. Moron, M. S., Defierre, J. W., & Mannervik, B. (1979). Biochem Biophys Acta, 582, 67–78.

    CAS  Google Scholar 

  18. Dinwoody, D. L., & Anselt, J. E. (2006). Clin Geriatr Med, 22, 1–15.

    Article  Google Scholar 

  19. Green, D., Hirsh, J., Heit, J., Prins, M., Davidson, B., & Lensing, A. W. A. (1994). Pharmacol Rev, 46, 89–109.

    CAS  Google Scholar 

  20. Linhardt, R. J., & Gunay, N. S. (1999). Semin Thromb Hoemost, 25(3), 5–6.

    CAS  Google Scholar 

  21. Warda, M., Gouda, E. M., Toida, T., Chi, L., & Linhardt, R. J. (2003). Comp Biochem Physiol Part C, 136, 357–365.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authorities of Annamalai University and the Director, CAS in Marine Biology for providing the facilities to carry out this work. The first author thanks the Indian Council of Medical Research, New Delhi, India for awarding Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saravanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, R., Shanmugam, A. Preventive Effect of Low Molecular Weight Glycosaminoglycan from Amussium pleuronectus (Linne) on Oxidative Injury and Cellular Abnormalities in Isoproterenol-Induced Cardiotoxicity in Wistar Rats. Appl Biochem Biotechnol 162, 43–51 (2010). https://doi.org/10.1007/s12010-009-8750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8750-5

Keywords

Navigation