Skip to main content
Log in

α-Amylase: An Ideal Representative of Thermostable Enzymes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 08 September 2010

An Erratum to this article was published on 08 September 2010

Abstract

The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, α-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mozhaev, V. V. (1993). Trends in Biotechnology, 11, 88–95.

    Article  CAS  Google Scholar 

  2. Vihinen, M., & Mantsala, P. (1989). Critical Reviews in Biochemistry and Molecular Biology, 24, 329–418.

    Article  CAS  Google Scholar 

  3. Soggard, M., Abe, J., Martineauclaire, M. F., & Svensson, B. (1993). Carbohyd Polym, 21, 137–146.

    Article  Google Scholar 

  4. Svennson, B. (1994). Plant Molecular Biology, 25, 141–157.

    Article  Google Scholar 

  5. Burhan, A., Nisa, U., Gokhan, C., Omer, C., Ashabil, A., & Osman, G. (2003). Process Biochemistry, 38, 1397–1403.

    Article  CAS  Google Scholar 

  6. Schwermann, B., Pfau, K., Liliensiek, B., Schleyer, M., Fischer, T., & Bakker, E. P. (1994). European Journal of Biochemistry, 226, 981–991.

    Article  CAS  Google Scholar 

  7. Underkofler, L. (1976). Industrial microbiology. New York: McGraw-Hill.

    Google Scholar 

  8. Bolton, D. J., Kelly, C. T., & Fogarty, W. M. (1997). Enz Microbiol Technol, 20, 340–343.

    Article  CAS  Google Scholar 

  9. Elaassar, S. A., Omar, S. H., Gouda, M. K., Ismail, A. M., & Abdelfattah, A. F. (1992). Applied Microbiology and Biotechnology, 38, 312–314.

    CAS  Google Scholar 

  10. Viara, N., Elena, P., & Elka, I. (1993). Journal of Biotechnology, 28, 277–289.

    Article  Google Scholar 

  11. Vihinen, M., & Mantsala, P. (1990). Biotechnology and Applied Biochemistry, 12, 427–435.

    CAS  Google Scholar 

  12. Canganella, F., Andrade, C., & Antranikian, G. (1994). Applied Microbiology and Biotechnology, 42, 239–245.

    CAS  Google Scholar 

  13. Ratnakhanokchai, K., Kaneko, I., Kamio, Y., & Izaki, K. (1992). Applied and Environmental Microbiology, 58, 2490–2494.

    Google Scholar 

  14. Fukusumi, S., Kamizono, A., Horinouchi, S., & Beppu, T. (1988). European Journal of Biochemistry, 174, 15–21.

    Article  CAS  Google Scholar 

  15. Tan, T.-C., Mijts, B. N., Swaminathan, K., Patel, B. K. C., & Divne, C. (2008). Journal of Molecular Biology, 378, 852–870.

    Article  CAS  Google Scholar 

  16. Burgesscassler, A., & Imam, S. (1991). Current Microbiology, 23, 207–213.

    Article  CAS  Google Scholar 

  17. Giraud, E., Gosselin, L., Marin, B., Parada, J. L., & Raimbault, M. (1993). Appl Bacteriol, 75, 276–282.

    CAS  Google Scholar 

  18. Prieto, J. A., Bort, B. R., Martinez, J., Radezgil, F., Buesa, C., & Sanz, P. (1995). Biochemistry and Cell Biology, 73, 41–49.

    Article  CAS  Google Scholar 

  19. Ramakrishna, S., Samir, K., & Chakrabarty, S. (1993). Enz Microbiol Technol, 10, 260–263.

    Google Scholar 

  20. Landerman, K., Asada, K., Uemori, T., Mukai, H., Taguchi, Y., Kato, I., et al. (1993). Journal of Biological Chemistry, 268, 24402–24407.

    Google Scholar 

  21. Koch, R., Spreinat, K., Lemke, K., & Antranikan, G. (1991). Archives of Microbiology, 155, 572–578.

    Article  CAS  Google Scholar 

  22. Niehaus, F., Bertoldo, C., Kahler, M., & Antranikian, G. (1999). Applied Microbiology and Biotechnology, 51, 711–729.

    Article  CAS  Google Scholar 

  23. Siquiera, E. M. D., Mizzuta, K., & Giglio, J. R. (1997). Mycological Research, 101, 188–190.

    Article  Google Scholar 

  24. Gomes, I., Gomes, J., & Steiner, W. (2003). Bioresource Technology, 90, 207–214.

    Article  CAS  Google Scholar 

  25. Aquino, A. C. M. M., Jorge, J. A., Terenzi, H. F., & Polizeli, M. L. T. M. (2003). Applied Microbiology and Biotechnology, 61, 323–328.

    CAS  Google Scholar 

  26. Hesse, O., Hansen, G., Hohne, W. E., & Komer, D. (1991). Biomedica Biochimica Acta, 50, 225–232.

    Google Scholar 

  27. Estelle, L., Ladrat, C., Ann, G., Georges, B., & Francis, D. (1997). CR Acad Sci, 320, 893–898.

    Google Scholar 

  28. Neuner, A., Jannasch, H. W., Belkin, S., & Stetter, K. O. (1990). Archives of Microbiology, 153, 205–207.

    Article  Google Scholar 

  29. Kwak, Y., Akeba, T., & Kudo, T. J. (1998). Ferment Bioeng, 86, 363–367.

    Article  CAS  Google Scholar 

  30. Jenssen, B., & Olsen, J. (1992). Enz Microbiol Technol, 14, 112–116.

    Article  Google Scholar 

  31. Liebl, W., Stemplinger, I., & Ruile, P. (1997). Bacteriol, 179, 941–948.

    CAS  Google Scholar 

  32. Egas, M. C. V., da Costa, M. S., Cowan, D. A., & Pires, E. M. V. (1998). Exothermophiles, 2, 23–32.

    Article  CAS  Google Scholar 

  33. Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillipsa, D. C., Pogson, C. I., Wilson, I. A., et al. (1975). Nature, 255, 609–614.

    Article  CAS  Google Scholar 

  34. Svensson, B., & Soggard, M. (1991). Biochemical Society Transactions, 20, 34–42.

    Google Scholar 

  35. Janecek, S., Svensson, B., & Henrissat, B. (1997). Journal of Molecular Evolution, 45, 322–331.

    Article  CAS  Google Scholar 

  36. MacGregor, E. A. (1988). Journal of Protein Chemistry, 7, 399–415.

    Article  CAS  Google Scholar 

  37. Nielsen, J. E., & Borchert, T. V. (2000). Biochimica et Biophysica Acta, 1543, 253–274.

    CAS  Google Scholar 

  38. van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Journal of Biotechnology, 94, 137–155.

    Article  Google Scholar 

  39. Kuriki, T., Hondoh, H., & Matsuura, Y. (2005). Biologia, 60, 13–16.

    CAS  Google Scholar 

  40. Kim, J.-S., Cha, S.-S., Kim, H.-J., Kim, T.-J., Ha, N.-C., Oh, S.-T., et al. (1999). Journal of Biological Chemistry, 274, 26279–26286.

    Article  CAS  Google Scholar 

  41. Koradi, R., Billeter, M., & Wuthrich, K. (1996). Journal of Molecular Graphics, 14, 51–132.

    Article  CAS  Google Scholar 

  42. Matsuura, Y., Kusunoki, M., Harada, W., & Kakudo, M. (1984). A J Biochem, 95, 697–702.

    CAS  Google Scholar 

  43. Feller, G., d'Amico, D., & Gerday, C. (1999). Biochem, 38, 4613–4619.

    Article  CAS  Google Scholar 

  44. Fitter, J., Hermann, R., Dencher, N. A., Blume, A., & Hauss, T. (2001). Biochem, 40, 10723–10731.

    Article  CAS  Google Scholar 

  45. Brozowski, A. M., Lawson, D. M., Turkenberg, J. P., Bisgaard-Frantzen, H., Svendsen, A., Borchert, T. V., et al. (2000). Biochem, 39, 9099–9107.

    Article  CAS  Google Scholar 

  46. Laderman, K. A., Davis, B. R., Krutzsch, H. C., Lewis, M. S., Griko, Y. V., Privalov, P. L., et al. (1993). Journal of Biological Chemistry, 268, 24394–24401.

    CAS  Google Scholar 

  47. Jorgensen, S., Vorgias, C. E., & Antranikian, G. (1997). Journal of Biological Chemistry, 272, 16335–16342.

    Article  CAS  Google Scholar 

  48. Linden, A., Mayans, O., Meyer-Claucke, W., Antranikian, G., & Wilmanns, M. (2003). Journal of Biological Chemistry, 278, 9875–9884.

    Article  CAS  Google Scholar 

  49. Machius, M., Wiegand, G., & Huber, R. (1995). Journal of Molecular Biology, 246, 545–559.

    Article  CAS  Google Scholar 

  50. Boel, E., Brady, L., Brozozowski, A. M., Derewenda, Z., Dodson, G. G., Jensen, V. J., et al. (1990). Biochem, 29, 6244–6249.

    Article  CAS  Google Scholar 

  51. Machius, M., Declerck, N., Huber, R., & Wiegand, G. (1998). Structure, 6, 281–292.

    Article  CAS  Google Scholar 

  52. Vallee, B. L., Stein, E. A., Summerwill, W. N., & Fischer, E. H. (1959). Journal of Biological Chemistry, 234, 2901–2905.

    CAS  Google Scholar 

  53. Hsiu, J., Fischer, E. H., & Stein, E. A. (1964). Biochem, 3, 61–66.

    Article  CAS  Google Scholar 

  54. Larson, S. B., Greenwood, A., Cascio, D., Day, J., & McPherson, A. (1994). Journal of Molecular Biology, 235, 1560–1584.

    Article  CAS  Google Scholar 

  55. Buisson, G., Duee, E., Haser, R., & Payan, F. (1987). EMBO Journal, 6, 3909–3916.

    CAS  Google Scholar 

  56. Goyal, N., Gupta, J. K., & Soni, S. K. (2005). Enz Microb Technol, 37, 723–734.

    Article  CAS  Google Scholar 

  57. Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Habibi, A. E., & Nemat-Goegani, M. (2001). Biochimica et Biophysica Acta, 1548, 229–237.

    CAS  Google Scholar 

  58. Declerk, N., Machius, M., Wiegand, G., Huber, R., & Giallardin, C. (2000). Journal of Molecular Biology, 301, 1041–1057.

    Article  CAS  Google Scholar 

  59. Lee, S., Mouri, Y., Minoda, M., Oneda, H., & Inouye, K. (2006). Journal of Biochemistry, 139, 1007–1015.

    Article  CAS  Google Scholar 

  60. Nonaka, T., Fujihashi, M., Kita, A., Hagihara, H., Ozaki, K., Ito, S., et al. (2003). Journal of Biological Chemistry, 278, 24818–24824.

    Article  CAS  Google Scholar 

  61. Koch, R., Zablowski, P., Sprienat, A., & Antranikian, G. (1990). FEMS Microbiology Letters, 71, 21–26.

    Article  CAS  Google Scholar 

  62. Shaw, J. F., Lin, F. P., Chen, S. C., & Chen, H. C. (1995). Bot Bull Acad Sin, 36, 195–200.

    CAS  Google Scholar 

  63. Malhotra, R., Noorvez, S. M., & Satyanarayana, T. (2000). Letters in Applied Microbiology, 31, 378–384.

    Article  CAS  Google Scholar 

  64. Levitsky, A., & Steer, M. L. (1974). European Journal of Biochemistry, 41, 171–180.

    Article  Google Scholar 

  65. Feller, G., Bussy, O., Houssier, C., & Gerday, C. (1996). Journal of Biological Chemistry, 271, 23836–23841.

    Article  CAS  Google Scholar 

  66. Ramasubbu, N., Paloth, V., Luo, Y., Brayer, G. D., & Levine, M. J. (1996). Acta Cryst, D52, 435–446.

    CAS  Google Scholar 

  67. Brayer, G. D., Luo, Y., & Withers, S. G. (1995). Protein Science, 4, 1730–1742.

    Article  CAS  Google Scholar 

  68. Aghazari, N., Feller, G., Gerday, C., & Haser, R. (1998). Protein Science, 7, 564–572.

    Article  Google Scholar 

  69. Koshland, D. E. (1953). Biological Review, 28, 416–436.

    CAS  Google Scholar 

  70. Davies, G., Sinnott, M. L., & Withers, S. G. (1998). Comprehensive biological catalysts (pp. 119–208). New York: Academic.

    Google Scholar 

  71. Ly, H. D., & Withers, S. G. (1999). Annual Review of Biochemistry, 68, 487–522.

    Article  CAS  Google Scholar 

  72. Uitdehaag, J. C. M., Mosi, R., Kalk, K. H., van der Veen, B. A., Dikhuizen, L., Withers, S. G., et al. (1999). Nature Structural Biology, 6, 432–436.

    Article  CAS  Google Scholar 

  73. MacGregor, E. A., Janecek, S., & Svennson, B. (2001). Biochimica et Biophysica Acta, 1546, 1–20.

    CAS  Google Scholar 

  74. Leveque, E., Janecek, S., Haye, B., & Belarbi, A. (2000). Enz Microbiol Technol, 26, 3–14.

    Article  CAS  Google Scholar 

  75. Savchenko, A., Vieille, C., & Zeikus, J. G. (2001). Methods in Enzymology, 330, 354–363.

    Article  CAS  Google Scholar 

  76. Linden, A., & Wilmanns, M. (2000). ChemBioChem, 45, 231–239.

    Google Scholar 

  77. Fontana, A. (1991). Current Opinion in Biotechnology, 2, 551–560.

    Article  CAS  Google Scholar 

  78. Ladenstein, R., & Antranikian, G. (1998). Advances in Biochemical Engineering/Biotechnology, 61, 37–85.

    Article  CAS  Google Scholar 

  79. Vielle, C., Burdette, D. S., & Zeikus, J. G. (1996). Biotechnology Annual Review, 2, 1–83.

    Article  Google Scholar 

  80. Saito, N. (1973). Archives of Biochemistry and Biophysics, 155, 296–298.

    Article  Google Scholar 

  81. Kobayashi, T., Kamekura, M., Kanlayakrit, W., & Ohnishi, H. (1986). Microbios, 46, 165–171.

    CAS  Google Scholar 

  82. Prieto, J. A., Bort, B. R., Martinez, J., Randez-Gil, F., Buesa, C., & Sanz, P. (1994). Biochemistry and Cell Biology, 73, 41–49.

    Article  Google Scholar 

  83. Jaenicke, R., Schurig, H., Beaucamp, N., & Ostendorp, R. (1996). Advances in Protein Chemistry, 48, 181–269.

    Article  CAS  Google Scholar 

  84. Bao, Q. Y., Tian, W., Li, Z., Xu, Z., et al. (2002). Genome Research, 12, 689–700.

    Article  CAS  Google Scholar 

  85. Saunders, N. F., Thomas, T., Curmi, P. M., Mattick, J. S., et al. (2003). Genome Research, 13, 1580–1588.

    Article  CAS  Google Scholar 

  86. Szilagyi, A., & Zavodszky, P. (2000). Structure, 8, 493–504.

    Article  CAS  Google Scholar 

  87. Paz, A., Mester, D., Baca, I., Nevo, E., et al. (2004). Proceedings of the National Academy of Sciences, 101, 2951–2956.

    Article  CAS  Google Scholar 

  88. Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S., Stillman, T. J., Britton, K. L., et al. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 12300–12305.

    Article  CAS  Google Scholar 

  89. Mallick, P., Butz, D. R., Eisenberg, D., & Yeates, T. O. (2002). Proceedings of the National Academy of Sciences, 99, 9679–9684.

    Article  CAS  Google Scholar 

  90. Jaenicke, R., & Bohm, G. (1998). Current Opinion in Structural Biology, 8, 738–748.

    Article  CAS  Google Scholar 

  91. Russell, R. J. M., Ferguson, J. M. C., Haugh, D. W., Danson, M. J., & Taylor, G. L. (1997). Biochem, 36, 9983–9994.

    Article  CAS  Google Scholar 

  92. Schumann, J., Bohm, G., Schumacher, G., Rudolph, R., & Jaenicke, R. (1993). Protein Science, 2, 1612–1620.

    Article  CAS  Google Scholar 

  93. Thompson, M. J., & Eisenberg, D. (1999). Journal of Molecular Biology, 290, 595–604.

    Article  CAS  Google Scholar 

  94. Haslbeck, M., Franzmann, T., Weinfurtner, D., & Buchner, J. (2005). Nature Structural & Molecular Biology, 12, 842–846.

    Article  CAS  Google Scholar 

  95. Das, R., & Gerstein, M. (2000). Functional & Integrative Genomics, 1, 76–88.

    CAS  Google Scholar 

  96. Tekaia, F., Yeramian, E., & Bernard, D. (2002). Gene, 297, 51–60.

    Article  CAS  Google Scholar 

  97. Matthews, B. W., Nicholson, H., & Bechtel, W. J. (1987). Proceedings of the National Academy of Sciences of the United States of America, 84, 6663–6667.

    Article  CAS  Google Scholar 

  98. Wigley, D. B., Clarke, A. R., Dunn, C. R., Barstow, D. A., Atkinson, T., Chia, W. N., et al. (1987). Biochimica et Biophysica Acta, 916, 145–148.

    CAS  Google Scholar 

  99. Zuber, H. (1988). Biophysical Chemistry, 29, 171–179.

    Article  CAS  Google Scholar 

  100. Haney, P., Konisky, J., Koretke, K. K., Luthey-Schulten, Z., & Wolynes, P. G. (1997). Proteins, 28, 117–130.

    Article  CAS  Google Scholar 

  101. Russell, R. J. M., Ferguson, J. M. C., Haugh, D. W., & Taylor, G. L. (1998). Structure, 6, 351–361.

    Article  CAS  Google Scholar 

  102. Watnabe, K., Hata, Y., Kizaki, H., Katsube, Y., & Suzuki, Y. (1997). Journal of Molecular Biology, 269, 142–153.

    Article  Google Scholar 

  103. Bogin, O., Peretz, M., Hacham, Y., Korkhin, Y., Frolow, F., Kalb, A. J., et al. (1998). Protein Science, 7, 1156–1163.

    Article  CAS  Google Scholar 

  104. Diao, Y., Ma, D., Wen, Z., Yin, J., Xiang, J., & Li, M. (2008). Amino Acids, 34(1), 111–117.

    Article  CAS  Google Scholar 

  105. Scandurra, R., Consalvi, V., Chiraluce, R., Politi, L., & Engel, P. C. (1998). Biochemie, 80, 933–941.

    Article  CAS  Google Scholar 

  106. Zhou, X. X., Wang, Y. B., Pan, Y. J., & Li, W. F. (2008). Amino Acids, 34, 25–33.

    Article  CAS  Google Scholar 

  107. Zavodszky, P., Kardos, J., Svingor, A., & Petsko, G. A. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 7406–7411.

    Article  CAS  Google Scholar 

  108. Facchiano, A. M., Colonna, G., & Ragone, R. (1998). Protein Engineering, 11, 753–760.

    Article  CAS  Google Scholar 

  109. Daniel, R. M., Cowan, D. A., Morgan, H. W., & Curran, M. P. (1982). Biochemical Journal, 207, 641–644.

    CAS  Google Scholar 

  110. Jaenicke, R. (1996). Naturwissenschaften, 83, 544–554.

    Article  CAS  Google Scholar 

  111. Beadle, B. M., Baase, W. A., Wilson, D. B., Gilkes, N. R., & Shoichet, B. K. (1999). Biochem, 38, 2570–2576.

    Article  CAS  Google Scholar 

  112. Yokota, K., Satou, K., & Ohki, S. (2006). Sci Technol Adv Mat, 7, 255–262.

    Article  CAS  Google Scholar 

  113. Villiarias, A. M., & Querol, E. (2006). Curr Bioinform, 1, 25–32.

    Article  Google Scholar 

  114. Byler, D. M., & Susi, H. (1986). Biopolymers, 25, 469–487.

    Article  CAS  Google Scholar 

  115. Yuuki, T., Nomura, T., & Tezuka, T. (1985). Journal of Biochemistry, 98, 1147–1156.

    CAS  Google Scholar 

  116. Tomazic, S. J., & Klibanov, A. M. (1988). Journal of Biological Chemistry, 263, 3092–3096.

    CAS  Google Scholar 

  117. Chattopadhyay, K., Sffarian, S., Elson, E. L., & Frieden, C. (2005). Biophysical Journal, 88, 1413–1422.

    Article  CAS  Google Scholar 

  118. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., & Schmid, F. X. (1991). Biochem, 30, 1586–1591.

    Article  CAS  Google Scholar 

  119. Ellis, R. J. (2003). Current Biology, 13, 881–883.

    Article  CAS  Google Scholar 

  120. Gill, I., & Ballasteros, A. (2000). Trends in Biotechnology, 18, 282–296.

    Article  CAS  Google Scholar 

  121. Zhang, X. J., Baase, W. A., & Matthews, B. W. (1992). Protein Science, 1, 761–766.

    Article  CAS  Google Scholar 

  122. Suzuki, Y., Ito, N., Yuuki, T., Yamagata, H., & Udaka, S. (1989). Journal of Biological Chemistry, 203, 18933–18938.

    Google Scholar 

  123. Barnett, C. C., Mitchinson, C., Power, S. D., & Roquad, T. C. A. (1998). Patent Application US, 5, 524–532.

    Google Scholar 

  124. Lehmann, M., & Wyss, M. (2001). Current Opinion in Biotechnology, 12, 371–375.

    Article  CAS  Google Scholar 

  125. Arnold, F. H. (1993). FASEB Journal, 7, 744–749.

    CAS  Google Scholar 

  126. Chen, K., & Arnold, F. H. (1991). Biotechnol, 9, 1073–1077.

    Article  CAS  Google Scholar 

  127. Pantoliano, M. W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., et al. (1989). Biochem, 28, 7205–7213.

    Article  CAS  Google Scholar 

  128. Declerck, N., Machius, M., Joyet, P., Wiegand, G., Huber, R., & Gaillardin, C. (2003). Protein Engineering, 16, 287–293.

    Article  CAS  Google Scholar 

  129. Shaw, A., Bott, R., & Day, A. G. (1999). Current Opinion in Biotechnology, 10, 349–352.

    Article  CAS  Google Scholar 

  130. Bessler, C., Schmitt, J., Maurer, K., & Schmid, R. D. (2003). Protein Science, 12, 2141–2149.

    Article  CAS  Google Scholar 

  131. Machius, M., Declerck, N., Huberr, R., & Wiegand, G. J. (2003). Biological Chemistry, 278, 11546–11553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivedita Jaiswal.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12010-010-9073-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, O., Jaiswal, N. α-Amylase: An Ideal Representative of Thermostable Enzymes. Appl Biochem Biotechnol 160, 2401–2414 (2010). https://doi.org/10.1007/s12010-009-8735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8735-4

Keywords

Navigation