Skip to main content
Log in

A Multistage Process to Enhance Cellobiose Production from Cellulosic Materials

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellobiose, a disaccharide, is a valuable product that can be obtained from cellulose hydrolysis. In this study, a simple methodology is presented to enhance the production and improve the selectivity of cellobiose during enzymatic hydrolysis of cellulose. The approach consisted of a multistage removal of filtrate via vacuum filtration and resuspension of the retentate. By this process, the remaining solid was further hydrolyzed without additional enzyme loading. Compared to the continuous hydrolysis process, the production of cellobiose increased by 45%. Increased selectivity of cellobiose is due to the loss of β-glucosidases in the filtrate, while enhanced productivity is likely due to mitigated product inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M., Liden, G., & Zacchi, G. (2006). Trends in Biotechnology, 24, 549–556.

    Article  CAS  Google Scholar 

  2. Ragauskas, A., Williams, C., Davison, B., Britovsek, G., Cairney, J., Eckert, C., et al. (2006). Science, 311, 484–489.

    Article  CAS  Google Scholar 

  3. Deleu, M., & Paquot, M. (2004). Comptes Rendus Chimie, 7, 641–646.

    Article  CAS  Google Scholar 

  4. Olsson, L., & Hahn-Hagerdahl, B. (1996). Enzyme and Microbial Technology, 18, 312–331.

    Article  CAS  Google Scholar 

  5. Luo, J., Xia, L., Lin, J., & Cen, P. (1997). Biotechnology Progress, 13, 762–767.

    Article  CAS  Google Scholar 

  6. Cao, N., Xia, Y., Gong, C., & Tsao, G. (1997). Applied Biochemistry and Biotechnology, 63–5, 129–139.

    Article  Google Scholar 

  7. Singer, N. S., Dubois, G. E., & Muller, G. W. (1990). Bulking agent. EP0355138.

  8. Franklin, K. R., Hopkinson, A., Webb, N., & White, M. S. (2002). Acylated cellobiose compounds. WO/2002/032914.

  9. Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., et al. (2005). Biotechnology and Bioengineering, 90, 473–481.

    Article  CAS  Google Scholar 

  10. Li, C., Wang, Q., & Zhao, Z. (2008). Green Chemistry, 10, 177–182.

    Article  CAS  Google Scholar 

  11. Li, C., & Zhao, Z. (2007). Advanced Synthesis & Catalysis, 349, 1847–1850.

    Article  CAS  Google Scholar 

  12. Chen, M., Zhao, J., & Xia, L. (2008). Carbohydrate Polymers, 71, 411–415.

    Article  CAS  Google Scholar 

  13. Lee, Y., & Fan, L. (1983). Biotechnology and Bioengineering, 25, 939–966.

    Article  CAS  Google Scholar 

  14. Tomme, P., Warren, R., & Gilkes, N. (1995). Advances in Microbial Physiology, 37, 1–81.

    Article  CAS  Google Scholar 

  15. Medve, J., Karlsson, J., Lee, D., & Tjerneld, F. (1998). Biotechnology and Bioengineering, 59, 621–634.

    Article  CAS  Google Scholar 

  16. Hui, J., White, T., & Thibault, P. (2002). Glycobiology, 12, 837–849.

    Article  CAS  Google Scholar 

  17. Kumar, R., Singh, S., & Singh, O. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  18. Lynd, L., Weimer, P., van Zyl, W., & Pretorius, I. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  19. Knutsen, J., & Davis, R. (2004). Applied Biochemistry and Biotechnology, 113–16, 585–599.

    Article  Google Scholar 

  20. Adey, B., & Baker, J. (1996). NREL Laboratory analytical procedure. Measurement of cellulases activities. Available from: http://www.nrel.gov/biomass/pdfs/42628.pdf. Accessed 15 Dec 2008.

  21. Ghose. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  22. Happi Emaga, T., Ronkart, S., Robert, C., Wathelet, B., & Paquot, M. (2008). Food Chemistry, 108, 463–471.

    Article  CAS  Google Scholar 

  23. Schroeder, L., Green, J. The Institute of paper Chemistry. (1970). Increased yields in alkaline pulping. I. A study of the peeling reaction at the conditions of kraft pulping. Project 2942. http://smartech.gatech.edu/bitstream/1853/783/1/2942_001_12181970.pdf. Accessed 15 Aug 2008.

  24. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Paquot, M. (1981). PhD thesis. Gembloux Agricultural University, Gembloux, Belgium.

  26. Tomme, P., Warren, A. J., Miller, R. C., Jr., Kilburn, D., & Gilkes, N. (1995). In J. N. Saddler & M. H. Penner (Eds.), Enzymatic degradation of insoluble carbohydrates (pp. 142–163). Washington: American Chemical Society.

    Google Scholar 

  27. Suurnäkki, A., Tenkanen, M., Siika-Aho, M., Niku-Paavola, M. L., Viikari, L., & Buchert, J. (2000). Cellulose, 7, 189–209.

    Article  Google Scholar 

  28. Andrić, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2009). Applied Biochemistry and Biotechnology. doi:10.1007-S12010-008-8512-9.

  29. Bonnin, E., Grangé, H., Lesage-Meessen, L., Asther, M., & Thibault, J.-F. (2000). Carbohydrate Polymers, 41, 143–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Walloon Region (project number 716757). We thank Ms. Virginie Byttebier for her excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Paquot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderghem, C., Boquel, P., Blecker, C. et al. A Multistage Process to Enhance Cellobiose Production from Cellulosic Materials. Appl Biochem Biotechnol 160, 2300–2307 (2010). https://doi.org/10.1007/s12010-009-8724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8724-7

Keywords

Navigation