Skip to main content
Log in

Rational Design of Catechol-2, 3-dioxygenase for Improving the Enzyme Characteristics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Catechol-2, 3-dioxygenase (C23O) from Pseudomonas sp. CGMCC2953 identified in our laboratory, which is one of the key enzymes responsible for phenanthrene biodegradation, was expected to get better characteristics tolerant to environment for its further application. With the aim of improving the enzyme properties by introducing intermolecular disulfide bonds, X-ray structure of a C23O from Pseudomonas putida MT-2, a highly conserved homologous with the C23O from Pseudomonas sp. CGMCC2953, was directly used to find the potential sites for forming disulfide bonds between two monomers of the target C23O. Two sites, Ala229 and His294, were identified and mutated to cysteine, respectively, by using site mutagenesis. The expected disulfide bond between these two CYS residues was confirmed with both molecular modeling and experimental results. The optimum temperature of the mutated enzyme was widened from 40 to 40∼50 °C. The mutated C23O became more alkalescency stable compared with the wild-type enzyme, e.g., 75% of the maximal enzyme activity retained even under pH 9.5 while 50% residue for the wild-type one. Improvement of thermostability of the mutated C230 with the redesigned disulfide was also confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou, Y., Wei, J. S., Jiang, T., Gao, W. F., Ma, Y. S., & Wei, D. Z. (2007). Characterisation of a thermostable catechol-2, 3-dioxygenase from phenanthrene-degrading Pseudomonas sp. strain ZJF08. Annals of Microbiology, 57, 503–508.

    Article  CAS  Google Scholar 

  2. Folsom, B. R., Chapmane, P. J., & Pritchard, P. H. (1990). Phenol and trichloroethylene degradation by pseudomonas cepacia G4; kinetics and interactions between substrates. Applied and Environmental Microbiology, 56, 1279–1287.

    CAS  Google Scholar 

  3. Takehiro, K., Tetsuo, I., Kihachiro, H., Yoshiyuki, T., Naganori, N., Atsushi, N., et al. (1995). Overexpression of pseudomonas putida catechol 2, 3-dioxygenase with high specific activity by genetically engineered Escherichia coli. Journal of Biochemistry, 117, 614–622.

    Google Scholar 

  4. Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 11, 236–243.

    Article  CAS  Google Scholar 

  5. Boyd, D. R., Sharma, N. D., & Allen, C. C. R. (2001). Aromatic dioxygenases: molecular biocatalysis and applications. Current Opinion in Biotechnology, 12, 564–573.

    Article  CAS  Google Scholar 

  6. Harayama, S., & Rekik, M. (1989). Aromatic ring-cleavage enzymes are classified into two gene families. Journal of Biological Chemistry, 164, 15328–15333.

    Google Scholar 

  7. Moon, J., Chang, H., Min, K. R., & Kim, Y. (1995). Cloning and sequencing of the catechol 2, 3-dioxygenase gene of Alcaligenes sp.KF711. Biochemical and Biophysical Research Communications, 208, 943–949.

    Article  CAS  Google Scholar 

  8. Meyer, S., Moser, R., Neef, A., Stahl, U., & Kämpfer, P. (1999). Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiol, 145, 1731–1741.

    Article  CAS  Google Scholar 

  9. Okuta, A., Ohnishi, K., Yagame, S., & Harayama, S. (2003). Intersubunit interaction and catalytic activity of catechol 2, 3-dioxygenases. Biochemical Journal, 371, 557–564.

    Article  CAS  Google Scholar 

  10. Nozaki, M., Ono, K., Nakazawa, T., Kotani, S., & Hayashi, O. (1968). Metapyrocatechase. II. The role of iron and sulfhydryl groups. Journal of Biological Chemistry, 243, 2682–2690.

    CAS  Google Scholar 

  11. Bartels, I., Knackmuss, H. J., & Reineke, W. (1984). Suicide inactivation of catechol-2, 3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Applied and Environmental Microbiology, 47, 500–505.

    CAS  Google Scholar 

  12. Cerdan, P., Wasserfallen, A., Rekik, M., Timmis, K. N., & Harayama, S. (1994). Substrate specificity of catechol-2, 3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. Journal of Bacteriology, 176, 6074–6081.

    CAS  Google Scholar 

  13. Betz, S. F. (1993). Disulfide bonds and the stability of globular proteins. Protein Science, 2, 1551–1558.

    Article  CAS  Google Scholar 

  14. Wedemeyer, W. J., Welker, E., Narayan, M., & Scheraga, H. A. (2000). Disulfide bonds and protein folding. Biochem, 39, 4207–4216.

    Article  CAS  Google Scholar 

  15. Kita, A., Kita, S., Fujisawa, I., Inaka, K., Ishida, T., Horiike, K., et al. (1999). An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2, 3-dioxygenase (metapyrocatechase) from Ppseudomonas putida mt-2. Structure, 7, 25–34.

    Article  CAS  Google Scholar 

  16. Sowdhamini, R., Srinivasan, N., Shoichet, B., Santi, D. V., Ramakrishnan, C., & Balaram, P. (1989). Stereochemical modelling of disulfide bridges: criteria for introduction into proteins by site-directed mutagenesis. Protein Engineering, 3, 95–103.

    Article  CAS  Google Scholar 

  17. Liu, J., Wang, Y., Liu, G., & Zhang, B. (2004). Comparison of three methods for determination of glutathione. Journal of Beijing University of Chemical Technology, 31, 35–38.

    Google Scholar 

  18. Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294, 93–96.

    Article  CAS  Google Scholar 

  19. Zhang, Y. (2008). Progress and challenges in protein structure prediction. Current Opinion in Structural Biology, 18, 342–348.

    Article  CAS  Google Scholar 

  20. Winkler, J., Eltis, L. D., Dwyer, D. F., & Rohde, M. (1995). Tetrameric structure and cellular location of catechol 2, 3-dioxygenase. Archives of Microbiology, 163, 65–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Zhou, Y., Xu, T. et al. Rational Design of Catechol-2, 3-dioxygenase for Improving the Enzyme Characteristics. Appl Biochem Biotechnol 162, 116–126 (2010). https://doi.org/10.1007/s12010-009-8720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8720-y

Keywords

Navigation