Skip to main content
Log in

Engineering Ecotin for Identifying Proteins with a Trypsin Fold

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ecotin is a bidentate, fold-specific inhibitor of mammalian serine-proteases produced by Escherichia coli. This molecule may be engineered to increase and/or change its affinity and specificity providing significant biotechnological potential. Since ecotin binds tightly to serine proteases of the trypsin fold, it may help to identify the role of these enzymes in different biological processes. In this work, we tested ecotin variants as an affinity purification reagent for identifying enzymes in samples of tumor progression and mammary gland involution. Initially, we used a commercial source of urokinase-type plasminogen activator (u-PA) that remained fully active after elution from an affinity column of the ecotin variant (M84R, M85R). We then successfully identified u-PA from more complex mixtures including lysates from a prostate cancer cell line and involuting mouse mammary glands. Interestingly, a membrane-type serine protease 1 was isolated from the Triton X-100-solubilized PC-3 cell lysates, and surprisingly, haptoglobin, a serine-protease homolog protein, was also identified in mammary gland lysates and in blood. Haptoglobin does not prevent ecotin inhibition of u-PA, but it may act as a carrier within blood when ecotin is used in vivo. Finally, this affinity purification matrix was also able to identify a thrombin-like enzyme from snake venom using an ecotin variant directed against thrombin. Overall, the ecotin variants acted as robust tools for the isolation and characterization of proteins with a trypsin fold. Thus, they may assist in the understanding of the role of these serine proteases and homologous proteins in different biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krarup, A., Wallis, R., Presanis, J. S., Gal, P., & Sim, R. B. (2007). PLoS ONE, 2, e623.

    Article  CAS  Google Scholar 

  2. Dass, K., Ahmad, A., Azmi, A. S., Sarkar, S. H., & Sarkar, F. H. (2008). Cancer Treatment Reviews, 34, 122–136.

    Article  CAS  Google Scholar 

  3. Parmar, N., Albisetti, M., Berry, L. R., & Chan, A. K. (2006). Clinical Laboratory, 52, 115–124.

    CAS  Google Scholar 

  4. Watson, C. J. (2006). Expert Reviews in Molecular Medicine, 8, 1–15. Review.

    Article  Google Scholar 

  5. Lima, D. C., Alvarez Abreu, P., de Freitas, C. C., Santos, D. O., Borges, R. O., Dos Santos, T. C., et al. (2005). Evidence-based Complementary and Alternative Medicine, 2, 39–47.

    Article  Google Scholar 

  6. Castro, H. C., Monteiro, R. Q., Assafim, M., Loureiro, N. I., Craik, C., & Zingali, R. B. (2006). The international journal of biochemistry & cell biology, 38, 1893–1900.

    Article  CAS  Google Scholar 

  7. McGrath, M. E., Gillmor, S. A., & Fletterick, R. J. (1995). Protein Science, 4, 141–148.

    Article  CAS  Google Scholar 

  8. Yang, S. Q., Cheng-I, W., Gilmor, S. A., Fletterick, R. J., & Craik, C. S. (1998). Journal of Molecular Biology, 279, 945–957.

    Article  CAS  Google Scholar 

  9. Lengyel, Z., Pal, G., & Sahin-Toth, M. (1998). Protein Expression and Purification, 12, 291–294.

    Article  CAS  Google Scholar 

  10. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F., & Jones, L. W. (1979). Investigative Urology, 17, 16–23.

    CAS  Google Scholar 

  11. Yoshida, E., Verrusio, E. N., Mihara, H., Oh, D., & Kwaan, H. C. (1994). Cancer Research, 54, 3300–3304.

    CAS  Google Scholar 

  12. Takeuchi, T., Shuman, M. A., & Craik, C. S. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 11054–11061.

    Article  CAS  Google Scholar 

  13. Nukumi, N., Iwamori, T., Kano, K., Naito, K., & Tojo, H. (2007). Journal of Cellular Physiology, 213, 793–800.

    Article  CAS  Google Scholar 

  14. Castro, H. C., Zingali, R. B., Albuquerque, M. G., Pujol-Luz, M., & Rodrigues, C. R. (2004). Cellular and Molecular Life Sciences, 61, 843–856.

    Article  CAS  Google Scholar 

  15. Linksauf dem Keller, U., Doucet, A., & Overall, C. M. (2007). Biological chemistry, 388, 1159–1162.

    Article  CAS  Google Scholar 

  16. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  17. Oliveira-Carvalho, A. L., Guimarães, P. R., Abreu, P. A., Dutra, D. L., Junqueira-de-Azevedo, I. L., Rodrigues, C. R., et al. (2008). Toxicon, 51, 659–671.

    CAS  Google Scholar 

  18. McGrath, M. E., Erpel, T., Browner, M. F., & Fletterick, R. J. (1991). Journal of Molecular Biology, 222, 139–142.

    Article  CAS  Google Scholar 

  19. McGrath, M. E., Hines, W. M., Sakanari, J. A., Fletterick, R. J., & Craik, C. S. (1991). The Journal of Biological Chemistry, 266, 6620–6625.

    CAS  Google Scholar 

  20. Erpel, T., Hwang, P., Craik, C. S., Fletterick, R. J., & McGrath, M. E. (1992). Journal of Bacteriology, 174, 1704–1710.

    CAS  Google Scholar 

  21. Zhu, L., Song, L., Chang, Y., Xu, W., & Wu, L. (2006). Fish & Shellfish Immunology, 20, 320–331.

    Article  CAS  Google Scholar 

  22. Wang, C. I., Yang, Q., & Craik, C. S. (1995). The Journal of Biological Chemistry, 270, 12250–12256.

    CAS  Google Scholar 

  23. Laboissière, M. C., Young, M. M., Pinho, R. G., Todd, S., Fletterick, R. J., Kuntz, I., et al. (2002). The Journal of Biological Chemistry, 277, 26623–26631.

    Article  CAS  Google Scholar 

  24. Eggers, C. T., Murray, I. A., Delmar, V. A., Day, A. G., & Craik, C. S. (2004). The Biochemical Journal, 379, 107–118.

    Article  CAS  Google Scholar 

  25. Davis, D. R., Wilson, K., Sam, M. J., Kennedy, S. E., Mackman, N., Charlesworth, J. A., et al. (2007). Journal of Molecular and Cellular Cardiology, 42, 559–571.

    Article  CAS  Google Scholar 

  26. Nielsen, M. J., Petersen, S. V., Jacobsen, C., Thirup, S., Enghild, J. J., Graversen, J. H., et al. (2007). The Journal of Biological Chemistry, 282, 1072–1079.

    Article  CAS  Google Scholar 

  27. Polticelli, F., Bocedi, A., Minervini, G., & Ascenzi, P. (2008). FEBS Journal, 275, 5648–5656.

    CAS  Google Scholar 

  28. Ettrich, R., Brandt, W., Kopecký, J. V., Baumruk, V., Hofbauerová, K., & Pavlícek, Z. (2002). Biological Chemistry, 383, 1667–1676.

    Article  CAS  Google Scholar 

  29. Greer, J. (1998). Proceedings of the National Academy of Sciences of the United States of America, 77, 3393–3397.

    Article  Google Scholar 

  30. Saeed, S. A., Ahmad, N., & Ahmed, S. (2007). Biochemical and Biophysical Research Communications, 353, 915–920.

    Article  CAS  Google Scholar 

  31. Friedrichs, W. E., Navarijo-Ashbaugh, A. L., Bowman, B. H., & Yang, F. (1995). Biochemical and Biophysical Research, 209, 250–256.

    Article  CAS  Google Scholar 

  32. Yang, F., Friedrichs, W. E., Navarijo-Ashbaugh, A. L., deGraffenried, L. A., Bowman, B. H., & Coalson, J. J. (1995). Laboratory Investigation; A Journal of Technical Methods and Pathology, 73, 433–439.

    CAS  Google Scholar 

  33. Maruyama, M., Sugiki, M., Yoshida, E., Mihara, H., & Nakajima, N. (1992). Toxicon, 30, 853–864.

    Article  CAS  Google Scholar 

  34. Zhang, Y., Wisner, A., Maroun, R. C., Choumet, V., Xiong, Y., & Bon, C. (1997). The Journal of Biological Chemistry, 272, 20531–20537.

    Article  CAS  Google Scholar 

  35. Silveira, A. M., Magalhães, A., Diniz, C. R., & de Oliveira, E. B. (1987). The International Journal of Biochemistry, 103, 596–605.

    Google Scholar 

  36. Paine, M. J., Desmond, H. P., Theakston, R. D., & Crampton, J. M. (1992). The Journal of Biological Chemistry, 32, 22869–22876.

    Google Scholar 

  37. Usami, Y., Fujimura, Y., Miura, S., Shima, H., Yoshida, E., Yoshioka, A., et al. (1994). Biochemical and Biophysical Research Communications, 201, 331–339.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the support of Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal Docente (CAPES), and Programa de Pós-Graduação da Universidade Federal Fluminense (UFF) for the financial support and H.C.C. and P. S. fellowships. TT and CSC were supported by NIH grant CA072006. We also thank Dr. Sushma Selvarajan for donating the mammary gland extracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena C. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathler, P.C., Craik, C.S., Takeuchi, T. et al. Engineering Ecotin for Identifying Proteins with a Trypsin Fold. Appl Biochem Biotechnol 160, 2355–2365 (2010). https://doi.org/10.1007/s12010-009-8711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8711-z

Keywords

Navigation