Skip to main content
Log in

Activation of Nanoparticles by Biosorption for E. coli Detection in Milk and Apple Juice

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two types of silver nanoparticles were activated by specific sorption of biomolecules for the detection of Escherichia coli. The capture of this bacterium was performed using polyclonal antibodies (anti-E. coli) biosorbed onto nanospheres or nanorice through a protein-A layer. The bacterial detection was achieved using surface enhancement Raman scattering in order to compare the performance of these two nanoparticles. The activated silver nanospheres showed a better performance mainly due to the dimension of these nanoparticles. The detection limit has been established using the automated Raman mapping system. The technique was capable of detecting 103 cells/mL in milk and apple juice without any pre-enrichment. With an overall assay time less than 1 h, the process could be easily adapted to detect other pathogens by selecting the pertinent antibody. Furthermore, PCR was used for the DNA verification to assess whether the selected bacterial strain was identical before and after detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stewart, C. M., Cole, M. B., & Schaffner, D. W. (2003). Journal of Food Protection, 66, 1310–1325.

    Google Scholar 

  2. Thevenot, D., Dernburg, A., & Vernozy-Rozand, C. (2006). Journal of Applied Microbiology, 101, 7–17.

    Article  CAS  Google Scholar 

  3. Zeng, H. Y., Zhang, X. F., Sun, Z., & Fang, W. H. (2006). Journal of the Science of Food and Agriculture, 86, 367–371.

    Article  CAS  Google Scholar 

  4. Bardsley, D. A. (1938). Journal of Hygiene, 38, 309–324.

    Article  Google Scholar 

  5. Batty-Smith, C. G. (1942). Journal of Hygiene, 42, 55–98.

    Article  CAS  Google Scholar 

  6. Liu, R. H., Yang, J. N., Lenigk, R., Bonanno, J., & Grodzinski, P. (2004). Analytical Chemistry, 76, 1824–1831.

    Article  CAS  Google Scholar 

  7. Bakir, M. A., Kitahara, M., Sakamoto, M., Matsumoto, M., & Benno, Y. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 931–993.

    Article  CAS  Google Scholar 

  8. Hartley, H. A., & Baeumner, A. J. (2003). Analytical and Bioanalytical Chemistry, 376, 319–327.

    CAS  Google Scholar 

  9. Edwards, K. A., Clancy, H. A., & Baeumner, A. J. (2006). Analytical and Bioanalytical Chemistry, 384, 73–84.

    Article  CAS  Google Scholar 

  10. Vanne, L., Karwoski, M., Karppinen, S., & Sjoberg, A. M. (1996). Food Control, 7, 263–276.

    Article  Google Scholar 

  11. Mathew, F. P., Alagesan, D., & Alocilja, E. C. (2004). Luminescence, 19, 193–198.

    Article  Google Scholar 

  12. Tang, H., Zhang, W., Geng, P., Wang, Q. J., Jin, L. T., Wu, Z. R., et al. (2006). Analytica Chimica Acta, 562, 190–196.

    Article  CAS  Google Scholar 

  13. Yang, L. J., Li, Y. B., & Erf, G. F. (2004). Analytical Chemistry, 76, 1107–1113.

    Article  CAS  Google Scholar 

  14. Gunasekera, T. S., Attfield, P. V., & Veal, D. A. (2000). Applied and Environmental Microbiology, 66, 1228–1232.

    Article  CAS  Google Scholar 

  15. Yang, L. J., & Li, Y. B. (2006). Analyst, 131, 394–401.

    Article  CAS  Google Scholar 

  16. Hanlon, E. B., Manoharan, R., Koo, T. W., Shafer, K. E., Motz, J. T., Fitzmaurice, M., et al. (2000). Physics in Medicine and Biology, 45, R1–R59.

    Article  CAS  Google Scholar 

  17. Williams, A. C., & Edwards, H. G. M. (1994). Journal of Raman Spectroscopy, 25, 673–677.

    Article  CAS  Google Scholar 

  18. Kerker, M., Siiman, O., Bumm, L. A., & Wang, D. S. (1980). Applied Optics, 19, 3253–3255.

    Article  CAS  Google Scholar 

  19. Ryder, A. G. (2005). Current Opinion in Chemical Biology, 9, 489–493.

    Article  CAS  Google Scholar 

  20. Fleischmann, M., Hendra, P. J., & McQuilla, A. (1974). Chemical Physics Letters, 26, 163–166.

    Article  CAS  Google Scholar 

  21. Podstawka, E., Ozaki, Y., & Proniewicz, L. M. (2004). Applied Spectroscopy, 58, 1147–1156.

    Article  CAS  Google Scholar 

  22. Wang, H., Brandl, D. W., Le, F., Nordlander, P., & Halas, N. J. (2006). Nano Letters, 6, 827–832.

    Article  CAS  Google Scholar 

  23. Efrima, S., & Bronk, B. V. (1998). Journal of Physical Chemistry B, 102, 5947–5950.

    Article  CAS  Google Scholar 

  24. Zeiri, L., Bronk, B. V., Shabtai, Y., Czege, J., & Efrima, S. (2002). Colloids and Surfaces A—Physicochemical and Engineering Aspects, 208, 357–362.

    Article  CAS  Google Scholar 

  25. Sanda, P. N., Warlaumont, J. M., Demuth, J. E., Tsang, J. C., Christmann, K., & Bradley, J. A. (1980). Physical Review Letters, 45, 1519–1523.

    Article  CAS  Google Scholar 

  26. Weitz, D. A., Garoff, S., Gersten, J. I., & Nitzan, A. (1983). Journal of Chemical Physics, 78, 5324–5338.

    Article  CAS  Google Scholar 

  27. Chew, H., Wang, D. S., & Kerker, M. (1984). Journal of Optical Society of America, 1, 56–66.

    Article  CAS  Google Scholar 

  28. Nie, S. M., & Emory, S. R. (1997). Abstracts of Papers of the American Chemical Society, 213, 177-PHYS.

  29. Olson, L. G., Uibel, R. H., & Harris, J. M. (2004). Applied Spectroscopy, 58, 1394–1400.

    Article  CAS  Google Scholar 

  30. Hicks, C. J. (2001). SERS, Surface enhanced Raman spectroscopy (p. 9). MI: Michigan State University Chemical Department.

    Google Scholar 

  31. Rivas, L., Sanchez-Cortes, S., Garcia-Ramos, J. V., & Morcillo, G. (2001). Langmuir, 17, 574–577.

    Article  CAS  Google Scholar 

  32. Kerker, M. (1980). Abstracts of Papers of the American Chemical Society, 180, 159-COLL.

  33. Blatchford, C. G., Campbell, J. R., & Creighton, J. A. (1982). Surface Science, 120, 435–455.

    Article  CAS  Google Scholar 

  34. Lee, Y. H., Dai, S., & Young, J. P. (1997). Journal of Raman Spectroscopy, 28, 635–639.

    Article  CAS  Google Scholar 

  35. Schuster, K. C., Urlaub, E., & Gapes, J. R. (2000). Journal of Microbiological Methods, 42, 29–38.

    Article  CAS  Google Scholar 

  36. Huang, W. E., Griffiths, R. I., Thompson, I. P., Bailey, M. J., & Whiteley, A. S. (2004). Analytical Chemistry, 76, 4452–4458.

    Article  CAS  Google Scholar 

  37. Britton, K. A., Dalterio, R. A., Nelson, W. H., Britt, D., & Sperry, J. F. (1988). Applied Spectroscopy, 42, 782–788.

    Article  CAS  Google Scholar 

  38. Canamares, M. V., Garcia-Ramos, J. V., Gomez-Varga, J. D., Domingo, C., & Sanchez-Cortes, S. (2005). Langmuir, 21, 8546–8553.

    Article  CAS  Google Scholar 

  39. Chumanov, G. D., Efremov, R. G., & Nabiev, I. R. (1990). Journal of Raman Spectroscopy, 21, 43–48.

    Article  CAS  Google Scholar 

  40. Goodacre, R., Timmins, E. M., Burton, R., Kaderbhai, N., Woodward, A. M., Kell, D. B., et al. (1998). Microbiology-(UK), 144, 1157–1170.

  41. Goral, J., & Zichy, V. (1990). Spectrochimica Acta Part A—Molecular and Biomolecular Spectroscopy, 46, 253–275.

    Article  Google Scholar 

  42. Grabbe, E. S., & Buck, R. P. (1989). Journal of the American Chemical Society, 111, 8362–8366.

    Article  CAS  Google Scholar 

  43. Keir, R., Sadler, D., & Smith, W. E. (2002). Applied Spectroscopy, 56, 551–559.

    Article  CAS  Google Scholar 

  44. Laucks, M. L., Sengupta, A., Junge, K., Davis, E. J., & Swanson, B. D. (2005). Applied Spectroscopy, 59, 1222–1228.

    Article  CAS  Google Scholar 

  45. Maquelin, K., Choo-Smith, L. P., van Vreeswijk, T., Endtz, H. P., Smith, B., Bennett, R., et al. (2000). Analytical Chemistry, 72, 12–19.

    Article  CAS  Google Scholar 

  46. Maquelin, K., Kirschner, C., Choo-Smith, L. P., van den Braak, N., Endtz, H. P., Naumann, D., et al. (2002). Journal of Microbiological Methods, 51, 255–271.

    Article  CAS  Google Scholar 

  47. Naumann, D. (2001). Applied Spectroscopy Reviews, 36, 239–298.

    Article  CAS  Google Scholar 

  48. Schuster, K. C., Reese, I., Urlaub, E., Gapes, J. R., & Lendl, B. (2000). Analytical Chemistry, 72, 5529–5534.

    Article  CAS  Google Scholar 

  49. Sengupta, A., Mujacic, M., & Davis, E. J. (2006). Analytical and Bioanalytical Chemistry, 386, 1379–1386.

    Article  CAS  Google Scholar 

  50. Venkatakrishna, K., Kurien, J., Pai, K. M., Valiathan, M., Kumar, N. N., Krishna, C. M., et al. (2001). Current Science, 80, 665–669.

    CAS  Google Scholar 

  51. Zhao, H. Y., Yuan, B., & Don, X. M. (2004). Journal of Optics A—Pure and Applied Optics, 6, 900–905.

    Article  CAS  Google Scholar 

  52. Zheng, Y. G., Carey, P. R., & Palfey, B. A. (2004). Journal of Raman Spectroscopy, 35, 521–524.

    Article  CAS  Google Scholar 

  53. Jarvis, R. M., & Goodacre, R. (2004). Analytical Chemistry, 76, 40–47.

    Article  CAS  Google Scholar 

  54. Shapira, R., Paster, N., Menasherov, M., Eyal, O., Mett, A., Meiron, T., et al. (1997). Applied and Environmental Microbiology, 63, 990–995.

    CAS  Google Scholar 

  55. Nelson, D. L., & Cox, M. M. (2000). Lehninger Principles of Biochemistry (3rd ed., p. 1152). New York: Worth.

    Google Scholar 

  56. Goodridge, L., Chen, J. R., & Griffiths, M. (1999). Applied and Environmental Microbiology, 65, 1397–1404.

    CAS  Google Scholar 

  57. Ochoa, M. L., & Harrington, P. B. (2005). Analytical Chemistry, 77, 5258–5267.

    Article  CAS  Google Scholar 

  58. Boyaci, I. H., Aguilar, Z. P., Hossain, M., Halsall, H. B., Seliskar, C. J., & Heineman, W. R. (2005). Analytical and Bioanalytical Chemistry, 382, 1234–1241.

    Article  CAS  Google Scholar 

  59. Bhagwat, A. A. (2003). International Journal of Food Microbiology, 84, 217–224.

    CAS  Google Scholar 

  60. Hubble, I. B. (1997). Australian Journal of Dairy Technology, 52, 102–108.

    Google Scholar 

  61. Lee, D., Cohen, R. E., & Rubner, M. F. (2005). Langmuir, 21, 9651–9659.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Denis Bourque for providing the E. coli with the GFP gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghinwa Naja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naja, G., Bouvrette, P., Champagne, J. et al. Activation of Nanoparticles by Biosorption for E. coli Detection in Milk and Apple Juice. Appl Biochem Biotechnol 162, 460–475 (2010). https://doi.org/10.1007/s12010-009-8709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8709-6

Keywords

Navigation