Skip to main content
Log in

Structure and Applications of a Rhamnolipid Surfactant Produced in Soybean Oil Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC10C10 and the dirhamnolipid Rha2C10C10 were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 μg/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 μg/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2005). Biotechnology Progress, 21, 1593–1600.

    Article  CAS  Google Scholar 

  2. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508.

    Article  CAS  Google Scholar 

  3. Singh, P., & Cameotra, S. S. (2004). Trends in Biotechnology, 22, 142–146.

    Article  CAS  Google Scholar 

  4. Deleu, M., & Paquot, M. (2004). C.R Chimie, 7, 641–646.

    CAS  Google Scholar 

  5. Nitschke, M., & Costa, S. G. V. A. O. (2007). Trends in Food Science & Technology, 18, 252–259.

    Article  CAS  Google Scholar 

  6. Mercade, M. E., & Manresa, M. A. (1994). Journal of the American Oil Chemists' Society, 71, 61–64.

    Article  CAS  Google Scholar 

  7. Bednarski, W., Adamczak, M., Tomasik, J., & Plaszczyk, M. (2004). Bioresource Technology, 95, 15–18.

    Article  CAS  Google Scholar 

  8. Shah, V., Jurjevic, M., & Badia, D. (2007). Biotechnology Progress, 23, 512–515.

    Article  CAS  Google Scholar 

  9. Dubey, K., & Juwakar, A. (2001). W. J. Microbial Biotechnology, 17, 61–69.

    Article  CAS  Google Scholar 

  10. Fox, S. L., & Bala, G. A. (2000). Bioresource Technology, 75, 235–240.

    Article  CAS  Google Scholar 

  11. Nitschke, M., & Pastore, G. M. (2003). Applied Biochemistry and Biotechnology, 105–108, 295–301.

    Article  Google Scholar 

  12. Benincasa, M., & Accorsini, F. R. (2008). Bioresource Technology, 99, 3843–3849.

    Article  CAS  Google Scholar 

  13. Lang, S., & Wagner, F. (1987). In N. Kosaric & W. L. Cairns (Eds.), Biosurfactants and Biotechnology: Structure and properties of biosurfactants (pp. 21–45). New York: Marcel Dekker.

    Google Scholar 

  14. Guerra-Santos, L., Kapelli, O., & Fiechter, A. (1984). Applied and Environmental Microbiology, 48, 302–305.

    Google Scholar 

  15. Benincasa, M., Contiero, J., Manresa, A., & Moraes, I. O. (2002). Journal of Food Engineering, 54, 283–288.

    Article  Google Scholar 

  16. Nitschke, M., Costa, S. G. V. A. O., Haddad, R., Gonçalves, L. A. G., Eberlin, M. N., & Contiero, J. (2005). Biotechnology Progress, 21, 1562–1566.

    Article  CAS  Google Scholar 

  17. Robert, M., Mercade, M. E., Bosch, M. P., Parra, J. L., Espuny, M. J., Manresa, A., et al. (1989). Biotechnology Letters, 11, 871–874.

    Article  CAS  Google Scholar 

  18. Chandrasekaran, E. V., & Bemiller, J. N. (1980). In L. Wrhiste & M. L. Wolfrom (Eds.), Methods in carbohydrate chemistry: constituent analysis of glycosaminoglycans (pp. 89–96). New York: Academic.

    Google Scholar 

  19. Itoh, S., Honda, H., Tomota, F., & Suzuki, T. (1971). Journal of Antibiotics, 24, 855–859.

    CAS  Google Scholar 

  20. Lowry, O. H., Rosebrought, N. J., Farr, A., & Randall, R. J. (1951). Journal of Biological Chemistry, 66, 265–274.

    Google Scholar 

  21. Eaton AD, Clesceri LS and Greenberg AE (1995). In: Standard methods for the examination of water and wastewater: nitrogen (nitrate) ultraviolet spectrophotometric screening method. American Public Health Association, Baltimore: United Book Press, Inc., pp. 4–85–4–86.

  22. Reiling, H. E., Thanei-Wyss, U., Guerra-Santos, L. H., Hirt, R., Kappeli, O., & Fiechter, A. (1986). Applied and Environmental Microbiology, 51, 985–989.

    CAS  Google Scholar 

  23. Deziel, E. F., Lepine, F., Dennie, D., Boismenu, D., Mamer, A. O., & Villemur, R. (1999). Biochimica et Biophysica Acta, 1440, 244–252.

    CAS  Google Scholar 

  24. Urum, K., Pekdemir, T., & Çopur, M. (2004). Journal of College Interface Science, 276, 456–464.

    Article  CAS  Google Scholar 

  25. Woods, G. L., & Washington, J. A. (1995). In P. R. Murray (Ed.), Manual of clinical microbiology: antibacterial susceptibility tests: dilution and disk diffusion methods (pp. 1327–1341). Washington: ASM.

    Google Scholar 

  26. Ochsner, U. A., Hembach, T., & Fiechter, A. (1995). Advances in Biochemical Engineering/Biotechnology, 53, 89–118.

    Article  Google Scholar 

  27. Mata-Sandoval, J. C., Karns, J., & Torrents, A. (2001). Microbiological Research, 155, 249–256.

    CAS  Google Scholar 

  28. Benincasa, M., Abalos, A., Oliveira, I., & Manresa, A. (2004). Anton Leeuw Int J G, 85, 1–8.

    Article  CAS  Google Scholar 

  29. Urum, K., & Pekdemir, T. (2004). Chemosphere, 57, 1139–1150.

    Article  CAS  Google Scholar 

  30. Abalos, A., Pinazo, A., Infante, M. R., Casals, M., García, F., & Manresa, A. (2001). Langmuir, 17, 1367–1371.

    Article  CAS  Google Scholar 

  31. Haba, E., Abalos, A., Jauregui, O., Espuny, M. J., & Manresa, A. (2003). Journal of Surfactants and Detergents, 6, 155–161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP). We thank Cargill S.A. for supplying the soybean oil soapstock and François Lépine and Sylvain Milot from Institut Armand-Frappier (Canada) for their help on structural characterization of rhamnolipids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Nitschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitschke, M., Costa, S.G.V.A.O. & Contiero, J. Structure and Applications of a Rhamnolipid Surfactant Produced in Soybean Oil Waste. Appl Biochem Biotechnol 160, 2066–2074 (2010). https://doi.org/10.1007/s12010-009-8707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8707-8

Keywords

Navigation