Skip to main content
Log in

Expression of a Chitinase Gene from Metarhizium anisopliae in Tobacco Plants Confers Resistance against Rhizoctonia solani

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The chit1 gene from the entomopathogenic fungus Metarhizium anisopliae, encoding the endochitinase CHIT42, was placed under the control of the CaMV 35S promoter, and the resulting construct was transferred to tobacco. Seventeen kanamycin-resistant transgenic lines were recovered, and the presence of the transgene was confirmed by polymerase chain reactions and Southern blot hybridization. The number of chit1 copies was determined to be varying from one to four. Copy number had observable effects neither on plant growth nor development. Substantial heterogeneity concerning production of the recombinant chitinase, and both general and specific chitinolytic activities were detected in leaf extracts from primary transformants. The highest chitinase activities were found in plants harboring two copies of chit1 inserts at different loci. Progeny derived from self-pollination of the primary transgenics revealed a stable inheritance pattern, with transgene segregation following a mendelian dihybrid ratio. Two selected plants expressing high levels of CHIT42 were consistently resistant to the soilborne pathogen Rhizoctonia solani, suggesting a direct relationship between enzyme activity and reduction of foliar area affected by fungal lesions. To date, this is the first report of resistance to fungal attack in plants mediated by a recombinant chitinase from an entomopathogenic and acaricide fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duo-Chuan, L. (2006). Review of fungal chitinases. Mycopathologia, 161, 345–360. doi:10.1007/s11046-006-0024-y.

    Article  CAS  Google Scholar 

  2. Dana, M. M., Pintor-Toro, J. A., & Cubero, B. (2006). Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology, 142, 722–730. doi:10.1104/pp.106.086140.

    Article  CAS  Google Scholar 

  3. Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Tronsmo, A., Woo, S. L., et al. (1993). Chitinolytic enzymes of Trichoderma harzianum—purification of chitobiosidase and endochitinase. Phytopathology, 83, 302–307. doi:10.1094/Phyto-83-302.

    Article  CAS  Google Scholar 

  4. Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L., & Harman, G. E. (1994). Purification, characterisation and synergistic activity of a glucan 1,3-beta-glucosidase and an N-acetyl-glucosaminidase from Trichoderma harzianum. Phytopathology, 84, 398–405. doi:10.1094/Phyto-84-398.

    Article  CAS  Google Scholar 

  5. Lorito, M., Mach, R. L., Sposato, P., Strauss, J., Peterbauer, C. K., & Kubicek, C. P. (1996). Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proceedings of the National Academy of Sciences of the United States of America, 93, 14868–14872. doi:10.1073/pnas.93.25.14868.

    Article  CAS  Google Scholar 

  6. Seidl, V., Huemer, B., Seiboth, B., & Kubicek, C. P. (2005). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS Journal, 272, 5923–5939. doi:10.1111/j.1742-4658.2005.04994.x.

    Article  CAS  Google Scholar 

  7. Dahiya, N., Tewari, R., & Hoondal, G. S. (2006). Biotechnological aspects of chitinolytic enzymes: a review. Applied Microbiology and Biotechnology, 71, 773–782. doi:10.1007/s00253-005-0183-7.

    Article  CAS  Google Scholar 

  8. Lorito, M., Woo, S. L., Fernandez, I. G., Colucci, G., Harman, G. E., Pintor-Toro, J. A., et al. (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National Academy of Sciences of the United States of America, 95, 7860–7865. doi:10.1073/pnas.95.14.7860.

    Article  CAS  Google Scholar 

  9. Gokul, B., Lee, J. H., Song, K. B., Rhee, S. K., Kim, C. H., & Panda, T. (2000). Characterization and applications of chitinases from Trichoderma harzianum—a review. Bioprocess Engineering, 23, 691–694. doi:10.1007/s004499900138.

    Article  CAS  Google Scholar 

  10. Bolar, J. P., Norelli, J. L., Wong, K. W., Hayes, C. K., Harman, G. E., & Aldwinckle, H. S. (2000). Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to scab and reduces vigour. Phytopathology, 90, 72–77. doi:10.1094/PHYTO.2000.90.1.72.

    Article  CAS  Google Scholar 

  11. Bolar, J. P., Norelli, J. L., Harman, G. E., Brown, S. K., & Aldwinckle, H. S. (2001). Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Research, 10, 533–543. doi:10.1023/A:1013036732691.

    Article  CAS  Google Scholar 

  12. Noël, A., Levasseur, C., Le, V. Q., & Seguin, A. (2005). Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiological and Molecular Plant Pathology, 67, 92–99. doi:10.1016/j.pmpp.2005.09.010.

    Article  CAS  Google Scholar 

  13. Emani, C., Garcia, J. M., Lopata-Finch, E., Pozo, M. J., Uribe, P., Kim, D. J., et al. (2003). Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnology Journal, 1, 321–336. doi:10.1046/j.1467-7652.2003.00029.x.

    Article  CAS  Google Scholar 

  14. Terakawa, T., Takaya, N., Horiuchi, H., Koike, M., & Takagi, M. (1997). A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco. Plant Cell Reports, 16, 439–443.

    CAS  Google Scholar 

  15. St. Leger, R. J., Cooper, R. M., & Charnley, A. K. (1991). Characterization of a chitinase and chitobiase produced by the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 58, 415–426. doi:10.1016/0022-2011(91)90188-V.

    Article  CAS  Google Scholar 

  16. Pinto, A. S., Barreto, C. C., Schrank, A., Ulhoa, C. J., & Vainstein, M. H. (1997). Purification and characterization of an extracellular chitinase from the entomopathogen Metarhizium anisopliae. Canadian Journal of Microbiology, 43, 322–327.

    Article  CAS  Google Scholar 

  17. Bogo, M. R., Rota, C. A., Pinto, H., Jr., Ocampos, M., Correa, C. T., Vainstein, M. H., et al. (1998). A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae: isolation and characterisation of genomic and full-length cDNA. Current Microbiology, 73, 221–225. doi:10.1007/s002849900368.

    Article  Google Scholar 

  18. Kang, S. C., Park, S., & Lee, D. G. (1999). Purification and characterization of a novel chitinase from the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 73, 276–281. doi:10.1006/jipa.1999.4843.

    Article  CAS  Google Scholar 

  19. Frazzon, A. P., Vaz Junior, I., Masuda, A., Schrank, A., & Vainstein, M. H. (2000). In vitro assessment of Metarhizium anisopliae isolates to control the cattle tick Boophilus microplus. Veterinary Parasitology, 94, 117–125. doi:10.1016/S0304-4017(00)00368-X.

    Article  CAS  Google Scholar 

  20. da Silva, M. V., Santi, L., Staats, C. C., da Costa, A. M., Colodel, E. M., Driemeier, D., et al. (2005). Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Research in Microbiology, 156, 382–392. doi:10.1016/j.resmic.2004.10.013.

    Article  CAS  Google Scholar 

  21. St. Leger, R. J., Charnley, K., & Cooper, R. M. K. (1986). Cuticle degrading enzymes of entopathogenic fungi: mechanisms of interaction between pathogen enzymes and insect cuticle. Journal of Invertebrate Pathology, 47, 117–125.

    Google Scholar 

  22. St. Leger, R. J., Joshi, L., Bidochka, M., Rizzos, M. J., & Roberts, D. W. (1996). Characterisation and ultrastructural location of chitinases from Metarhizium anisopliae, M. flavoviridae and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Applied and Environmental Microbiology, 62, 907–912.

    CAS  Google Scholar 

  23. Sambrook, J., & Russel, D. W. (2001). Molecular cloning: a laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  24. Peach, C. R. W., & Velten, J. (1994). Agrobacterium-mediated gene transfer to plant cells: cointegrate and binary vector systems. In S. B. Gelvin, R. A. Schilperoort & D. P. S. Verma (Eds.), Plant molecular biology manual, Section B1 (pp. 1–19). Dordrecht: Kluwer.

    Google Scholar 

  25. Horsch, R. B., Fry, J. E., Hoffmann, N. I., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 277, 1229–1231.

    Google Scholar 

  26. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11–150.

    Google Scholar 

  27. Armitage, P., & Berry, G. (1987). Statistical methods in medical research (2nd ed.). London: Oxford University Press.

    Google Scholar 

  28. Memelink, J., Swords, K. M. M., Staehelin, L. A., & Hoge, J. H. C. (1994). Southern, northern and western blot analysis. In S. B. Gelvin, R. A. Schilperoort & D. P. S. Verma (Eds.), Plant molecular biology manual, Section F1 (pp. 1–23). Dordrecht: Kluwer.

    Google Scholar 

  29. Jefferson, R. A., & Wilson, K. J. (1994). The gus gene fusion system. In S. B. Gelvin, R. A. Schilperoort & D. P. S. Verma (Eds.), Plant molecular biology manual, Section B14 (pp. 9–33). Dordrecht: Kluwer.

    Google Scholar 

  30. Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  31. Reissig, J. L., Stromnger, L., & Leloir, L. F. (1955). A modified colorimetric method for the determination of N-acetylamino sugars. Journal of Biological Chemistry, 217, 959–966.

    CAS  Google Scholar 

  32. Yabuki, M., Mizushima, K., Amatou, T., Ando, A., Fuji, I., Shimada, M., et al. (1986). Purification and characterisation of chitinase and a chitobiase produced by Aeromonas hydrophila subesp anaraegenes A42. The Journal of General and Applied Microbiology, 32, 25–32. doi:10.2323/jgam.32.25.

    Article  CAS  Google Scholar 

  33. St. Leger, R. J., Staples, R. C., & Roberts, D. W. (1993). Entomopathogenic isolates of Metarhizium anisopliae, Beauveria bassiana and Aspergillus flavus produce multiple extracellular chitinase isozymes. Journal of Invertebrate Pathology, 61, 81–84. doi:10.1006/jipa.1993.1014.

    Article  CAS  Google Scholar 

  34. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  35. Rohini, V. K., & Rao, K. S. (2001). Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Science, 160, 889–898. doi:10.1016/S0168-9452(00)00462-3.

    Article  CAS  Google Scholar 

  36. Kishimoto, K., Nishizawa, Y., Tabei, Y., Hibi, T., Nakajima, M., & Akutsu, K. (2002). Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to grey mold (Botrytis cinerea). Plant Science, 162, 655–662. doi:10.1016/S0168-9452(01)00602-1.

    Article  CAS  Google Scholar 

  37. Chai, B., Maqbool, S. B., Hajela, R. K., Green, D., Vargas, J. M., Jr., Warkentin, D., et al. (2002). Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Science, 163, 183–193. doi:10.1016/S0168-9452(02)00069-9.

    Article  CAS  Google Scholar 

  38. Finnegan, J., & McElroy, D. (1994). Transgene inactivation: plants fight back!. Biotechnologies, 12, 883–888. doi:10.1038/nbt0994-883.

    Article  Google Scholar 

  39. Maqbool, S. B., & Christou, P. (1999). Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Molecular Breeding, 5, 471–480. doi:10.1023/A:1009634226797.

    Article  Google Scholar 

  40. Gooday, G. W., Zhu, W. Y., & Donnell, R. W. (1992). What are the roles of chitinases in the growing fungus? FEMS Microbiology Letters, 100, 387–392. doi:10.1111/j.1574-6968.1992.tb05730.x.

    CAS  Google Scholar 

  41. Datta, K., Jumin, T., Oliva, N., Ona, I., Velazhahan Mew, T. W., Muthukrishnan, S., et al. (2001). Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Science, 160, 405–414. doi:10.1016/S0168-9452(00)00413-1.

    Article  CAS  Google Scholar 

  42. Deineko, E. V., Novoselya, T. V., Zagorskaya, A. A., Filipenko, E. A., & Shumnyi, V. K. (2000). Expression instability of the marker nptII gene in transgenic tobacco plants. Russian Journal of Plant Physiology: A Comprehensive Russian Journal on Modern Phytophysiology, 47, 394–399.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. A.T.S. Matsumura for providing the isolates of R. solani employed in this study, Dr. M.H. Bodanese-Zanettini for green house facilities, Dr. S.C. Jacques for her assistance with statistical analysis, and architect R. Pasquali for his help with the illustrations. This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Pasquali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, M.F., Maraschin, S.d.F., Vom Endt, D. et al. Expression of a Chitinase Gene from Metarhizium anisopliae in Tobacco Plants Confers Resistance against Rhizoctonia solani . Appl Biochem Biotechnol 160, 1933–1946 (2010). https://doi.org/10.1007/s12010-009-8701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8701-1

Keywords

Navigation