Skip to main content
Log in

Effect of Chain Length of Alcohol on the Lipase-Catalyzed Esterification of Propionic Acid in Supercritical Carbon Dioxide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas, H., & Comeau, L. (2003). Aroma synthesis by immobilized lipase from Mucor sp. Enzyme Microb Technol, 32, 589–595.

    Article  CAS  Google Scholar 

  2. Maury, S., Buisson, P., Perrard, A., & Pierre, A. C. (2005). Esterification kinetics of the lipase from Burkholderia cepacia either free or encapsulated in a silica aerogel. J Mol Catal B Enzym, 32, 193–203.

    Article  CAS  Google Scholar 

  3. Yadav, G. D., & Lathi, P. S. (2003). Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases. Biochem Eng J, 16, 245–252.

    Article  CAS  Google Scholar 

  4. Bezbradica, D., Mijin, D., Marinkovic, S. S., & Knezevic, Z. (2006). The Candida rugosa lipase catalyzed synthesis of amyl isobutyrate in organic solvent and solvent-free system: a kinetic study. J Mol Catal B Enzym, 38, 11–16.

    Article  CAS  Google Scholar 

  5. Ramamurthi, S., & McCurdy, A. R. (1994). Lipase-catalyzed esterification of oleic acid and methanol in hexane—a kinetic study. J Am Oil Chem Soc, 71, 927–930.

    Article  CAS  Google Scholar 

  6. Krishna, S. H., & Karanth, N. G. (2001). Lipase-catalyzed synthesis of isoamyl butyrate—a kinetic study. Biochim Biophys Acta, 1547, 262–267.

    Google Scholar 

  7. Zaidi, A., Gainer, J. L., Carta, G., Mrani, A., Kadiri, T., Belarbi, Y., et al. (2002). Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects. J Biotechnol, 93, 209–216.

    Article  CAS  Google Scholar 

  8. Janssen, A. E. M., Sjursnes, B. J., Vakurov, A. V., & Halling, P. J. (1999). Kinetics of lipase-catalyzed esterification in organic media: correct model and solvent effects on parameters. Enzyme Microb Technol, 24, 463–470.

    Article  CAS  Google Scholar 

  9. Shintre, M. S., Ghadge, R. S., & Sawant, S. B. (2002). Kinetics of esterification of lauric acid with fatty alcohols by lipase: effect of fatty alcohol. J Chem Technol Biotechnol, 77, 1114–1121.

    Article  CAS  Google Scholar 

  10. Marty, A., Chulalaksananukul, W., Condoret, J. S., Willemot, R. M., & Durand, G. (1990). Comparison of lipase-catalysed esterification in supercritical carbon dioxide and in n-hexane. Biotechnol Lett, 12, 11–16.

    Article  CAS  Google Scholar 

  11. Marty, A., Chulalaksananukul, W., Willemot, R. M., & Condoret, J. S. (1992). Kinetics of lipase-catalyzed esterification in supercritical CO2. Biotechnol Bioeng, 39, 273–280.

    Article  CAS  Google Scholar 

  12. Dumont, T., Barth, D., Corbier, C., Branlant, G., & Perrut, M. (1992). Enzymatic reaction kinetic: comparison in an organic solvent and in supercritical carbon dioxide. Biotechnol Bioeng, 39, 329–333.

    Article  Google Scholar 

  13. Nakaya, H., Miyawaki, O., & Nakamura, K. (2001). Determination of log P for pressurized carbon dioxide and its characterization as a medium for enzyme reaction. Enzyme Microb Technol, 28, 176–182.

    Article  CAS  Google Scholar 

  14. Srivastava, S., Madras, G., & Modak, J. (2003). Esterification of myristic acid in supercritical carbon dioxide. J Supercrit Fluids, 27, 55–64.

    Article  CAS  Google Scholar 

  15. Kumar, R., Modak, J. M., & Madras, G. (2005). Effect of the chain length of the acid on the enzymatic synthesis of flavors in supercritical carbon dioxide. Biochem Eng J, 23, 199–202.

    Article  CAS  Google Scholar 

  16. Laudani, C. G., Habulin, M., Knez, Z., Porta, G. D., & Reverchon, E. (2007). Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: kinetics and thermodynamics. J Supercrit Fluids, 41, 92–101.

    Article  CAS  Google Scholar 

  17. Laudani, C. G., Habulin, M., Primozic, M., Knez, Z., Porta, G. D., & Reverchon, E. (2006). Optimisation of n-octyl oleate enzymatic synthesis over Rhizomucor miehei lipase. Bioprocess Biosyst Eng, 29, 119–127.

    Article  CAS  Google Scholar 

  18. Knez, Z., Rizner, V., Habulin, M., & Bauman, D. (1995). Enzymatic synthesis of oleyi oleate in dense fluids. J Am Oil Chem Soc, 72, 1345–1349.

    Article  CAS  Google Scholar 

  19. Srivastava, S., Modak, J. M., & Madras, G. (2002). Enzymatic synthesis of flavors in supercritical carbon dioxide. Ind Eng Chem Res, 41, 1940–1945.

    Article  CAS  Google Scholar 

  20. Naoe, K., Ohsa, T., Kawagoe, M., & Imai, M. (2001). Esterification by Rhizopus delemar lipase in organic solvent using sugar ester reverse micelles. Biochem Eng J, 9, 67–72.

    Article  CAS  Google Scholar 

  21. Marty, A., Combes, D., & Condoret, J. S. (1994). Continuous reaction-separation process for enzymatic esterification in supercritical carbon dioxide. Biotechnol Bioeng, 43, 497–504.

    Article  CAS  Google Scholar 

  22. Varma, M. N., & Madras, G. (2007). Synthesis of isoamyl laurate and isoamyl stearate in supercritical carbon dioxide. Appl Biochem Biotech, 136, 139–147.

    Article  Google Scholar 

  23. Blattner, C., Zoumpanioti, M., Kroner, J., Schmeer, G., Xenakisb, A., & Kunz, W. (2006). Biocatalysis using lipase encapsulated in microemulsion-based organogels in supercritical carbon dioxide. J Supercrit Fluids, 36, 182–193.

    Article  CAS  Google Scholar 

  24. Romero, M. D., Calvo, L., Alba, C., Habulin, M., Primo, M., & Knez, Z. (2005). Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in supercritical carbon dioxide. J Supercrit Fluids, 33, 77–84.

    CAS  Google Scholar 

  25. Varma, M. N., & Madras, G. (2008). Kinetics of synthesis of butyl butyrate by esterification and transesterification in supercritical carbon dioxide. J Chem Technol Biotechnol, 83, 1135–1144.

    Article  CAS  Google Scholar 

  26. Varma, M. N., & Madras, G. (2007). Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind Eng Chem Res, 46, 1–6.

    Article  CAS  Google Scholar 

  27. Chulalaksananukul, W., Condoret, J. S., & Combes, D. (1993). Geranyl acetate synthesis by lipase-catalyzed transesterification in supercritical carbon dioxide. Enzyme Microb Technol, 15, 691–698.

    Article  CAS  Google Scholar 

  28. Yadav, G. D., & Lathi, P. S. (2005). Lipase catalyzed transesterification of methyl acetoacetate with n-butanol. J Mol Catal B Enzym, 32, 107–113.

    Article  CAS  Google Scholar 

  29. Yadav, G. D., & Lathi, P. S. (2004). Synergism between microwave and enzyme catalysis in intensification of reactions and selectivities: transesterification of methyl acetoacetate with alcohols. J Mol Catal A Chem, 223, 51–56.

    Article  CAS  Google Scholar 

  30. Hernandez, F. J., delos Rios, A. P., Gomez, D., Rubio, M., & Villora, G. (2006). A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B, 67, 121–126.

    Article  CAS  Google Scholar 

  31. Varma, M. N., & Madras, G. (2008). Effect of chain length on enzymatic hydrolysis of p-nitrophenyl esters in supercritical carbon dioxide. Appl Biochem Biotech, 144, 213–223.

    Article  CAS  Google Scholar 

  32. Zhang, H., Xu, X., Mu, H., Nilsson, J., Adler-Nissen, J., & Hoy, C. E. (2000). Lipozyme IM catalysed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactor. Eur J Lipid Sci Technol, 102, 411–418.

    Article  CAS  Google Scholar 

  33. Dixon, M., & Webb, E. C. (1979). The enzymes (3rd ed., p. 267). London: Longman.

    Google Scholar 

  34. Malcatta, F. X., Reyes, H. R., Garcia, H. S., Hill, C. G., & Amundson, C. H. (1992). Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb Technol, 14, 426–446.

    Article  Google Scholar 

  35. Gandhi, N. N., Sawant, S. B., & Joshi, J. B. (1985). Specificity of a lipase in ester synthesis: effect of alcohol. Biotechnol Prog, 11, 282–287.

    Article  Google Scholar 

  36. Parida, S., & Dordick, J. S. (1993). Tailoring lipase specificity by solvent and substrate chemistries. J Org Chem, 58, 3238–3244.

    Article  CAS  Google Scholar 

  37. Molinari, F., Gandolfi, R., & Aragozzini, F. (1996). Microbial catalyzed esterification of primary and secondary alcohols in organic solvents. Biotechnol Tech, 10, 103–108.

    Article  CAS  Google Scholar 

  38. Kumar, R., Madras, G., & Modak, J. (2004). Enzymatic synthesis of ethyl palmitate in supercritical carbon dioxide. Ind Eng Chem Res, 43, 1568–1573.

    Article  CAS  Google Scholar 

  39. Olsen, T., Kerton, F., Marriott, R., & Grogan, G. (2006). Biocatalytic esterification of lavandulol in supercritical carbon dioxide using acetic acid as the acyl donor. Enzyme Microb Technol, 39, 621–625.

    Article  CAS  Google Scholar 

  40. Kumar, R., Madras, G., & Modak, J. (2004). Synthesis of octyl palmitate in various supercritical fluids. Ind Eng Chem Res, 43, 7697–7701.

    Article  Google Scholar 

  41. Yadav, G. D., & Devi, K. M. (2004). Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem Eng Sci, 59, 373–383.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the department of biotechnology, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giridhar Madras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, M.N., Madras, G. Effect of Chain Length of Alcohol on the Lipase-Catalyzed Esterification of Propionic Acid in Supercritical Carbon Dioxide. Appl Biochem Biotechnol 160, 2342–2354 (2010). https://doi.org/10.1007/s12010-009-8696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8696-7

Keywords

Navigation