Skip to main content
Log in

Isolation of Halotolerant Bacillus licheniformis WX-02 and Regulatory Effects of Sodium Chloride on Yield and Molecular Sizes of Poly-γ-Glutamic Acid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A poly-γ-glutamic acid (γ-PGA) productive strain, halotolerant bacterium WX-02 was isolated from the saline soil of China (Yingcheng). By physiological, biochemical, and 16S rDNA sequence analysis methods, the strain was identified as Bacillus licheniformis. The effect of NaCl concentration on γ-PGA production by WX-02 was investigated in modified E (ME) medium. It was found that the γ-PGA production was salt-inducible, and the highest volumetric yield of γ-PGA (13.86 g/l) was attained with 8% of NaCl. It was also observed that the molecular size of γ-PGA decreased when the NaCl concentration increased. This was the first report of isolation and identification of a γ-PGA productive strain, halotolerant B. licheniformis. This study provided a simple strategy for controlling the yield and molecular size of γ-PGA by WX-02.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buescher, J. M., & Margaritis, A. (2007). Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology, 27, 1–19. doi:10.1080/07388550601166458.

    Article  CAS  Google Scholar 

  2. Wang, Q., Chen, S., Zhang, J., Sun, M., Liu, Z., & Yu, Z. (2008). Co-producing lipopeptides and poly-gamma-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Bioresource Technology, 99, 3318–3323. doi:10.1016/j.biortech.2007.05.052.

    Article  CAS  Google Scholar 

  3. Cromwick, A. M., Birrer, G. A., & Gross, R. A. (1996). Effects of pH and aeration on γ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnology and Bioengineering, 50, 222–227. doi:10.1002/(SICI)1097-0290(19960420)50:2<222::AID-BIT10>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  4. Yoon, S. H., Do, J. H., Lee, S. Y., & Chang, H. N. (2000). Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnology Letters, 22, 585–588. doi:10.1023/A:1005625026623.

    Article  CAS  Google Scholar 

  5. Ogawa, Y., Yamaguchi, F., Yuasa, K., & Tahara, Y. (1997). Efficient production of γ-polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Bioscience, Biotechnology, and Biochemistry, 61, 1684–1687. http://ci.nii.ac.jp/naid/110002678788/.

    Article  CAS  Google Scholar 

  6. Ashiuchi, M., Kamei, T., Baek, D. H., Shin, S. Y., Sung, M. H., & Soda, K. (2001). Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Applied Microbiology and Biotechnology, 57, 764–769. doi:10.1007/s00253-001-0848-9.

    Article  CAS  Google Scholar 

  7. Soliman, N. A., Berekaa, M. M., & Abdel-Fattah, Y. R. (2005). Polyglutamic acid (PGA) production by Bacillus sp SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements. Applied Microbiology and Biotechnology, 69, 259–267. doi:10.1007/s00253-005-1982-6.

    Article  CAS  Google Scholar 

  8. Wu, Q., Xu, H., Liang, J. F., & Yao, J. (2008). Contribution of glycerol on production of poly(gamma-glutamic acid) in Bacillus subtilis NX-2. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8320-2.

    Google Scholar 

  9. Du, G. C., Yang, G., Qu, Y. B., Chen, J., & Lun, S. Y. (2005). Effects of glycerol on the production of poly(γ-glutamic acid) by Bacillus licheniformis. Process Biochemistry, 40, 2143–2147. doi:10.1016/j.procbio.2004.08.005.

    Article  CAS  Google Scholar 

  10. Bajaj, I. B., & Singhal, R. S. (2008). Enhanced production of poly(gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8427-5.

    Google Scholar 

  11. Leonard, C. G., & Housewright, R. D. (1963). Polyglutamic acid synthesis by cell-free extracts of Bacillus Licheniformis. Biochimica et Biophysica Acta, 73, 530–532. doi:10.1016/0006-3002(63)90461-X.

    Article  CAS  Google Scholar 

  12. Claus, D., & Berkeley, R. W. C. (1986). In P. H. A. Sneath (Ed.), Bergey's manual of systematic bacteriology, vol. 2: Genus Bacillus Cohn 1872 (pp. 1105–1138). Baltimore: Williams & Wilkins.

    Google Scholar 

  13. Li, X., Zhang, D., Chen, F., Ma, J., Dong, Y., & Zhang, L. (2004). Klebsiella singaporensis sp. nov., a novel isomaltulose-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 54, 2131–2136. doi:10.1099/ijs.0.02690-0.

    Article  CAS  Google Scholar 

  14. Pospiech, A., & Neumann, B. (1995). A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends in Genetics, 11, 217–218. doi:10.1016/S0168-9525(00)89052-6.

    Article  CAS  Google Scholar 

  15. Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., et al. (2003). The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31, 442–443. doi:10.1093/nar/gkg039.

    Article  CAS  Google Scholar 

  16. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599. doi:10.1093/molbev/msm092.

    Article  CAS  Google Scholar 

  17. Do, J. H., Chang, H. N., & Lee, S. Y. (2001). Efficient recovery of gamma-poly(glutamic acid) from highly viscous culture broth. Biotechnology and Bioengineering, 76, 219–223. doi:10.1002/bit.1186.

    Article  CAS  Google Scholar 

  18. Shimizu, K., Nakamura, H., & Ashiuchi, M. (2007). Salt-inducible bionylon polymer from Bacillus megaterium. Applied and Environmental Microbiology, 73, 2378–2379. doi:10.1128/AEM.02686-06.

    Article  CAS  Google Scholar 

  19. Hezayen, F. F., Rehm, B. H., Eberhardt, R., & Steinbüchel, A. (2000). Polymer production by two newly isolated extremely halophilic archaea: Application of a novel corrosion-resistant bioreactor. Applied Microbiology and Biotechnology, 54, 319–325. doi:10.1007/s002530000394.

    Article  CAS  Google Scholar 

  20. Kimura, K., & Itoh, Y. (2003). Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: Possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Applied and Environmental Microbiology, 69, 2491–2497. doi:10.1128/AEM.69.5.2491-2497.2003.

    Article  CAS  Google Scholar 

  21. Stanley, N. R., & Lazazzera, B. A. (2005). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Molecular Microbiology, 57, 1143–1158. doi:10.1111/j.1365-2958.2005.04746.x.

    Article  CAS  Google Scholar 

  22. Ruzal, S. M., & Sanchez-Rivas, C. (1998). In Bacillus subtilis DegU-P is a positive regulator of the osmotic response. Current Microbiology, 37, 368–372. doi:10.1007/s002849900395.

    Article  CAS  Google Scholar 

  23. Lentzen, G., & Schwarz, T. (2006). Extremolytes: Natural compounds from extremophiles for versatile applications. Applied Microbiology and Biotechnology, 72, 623–634. doi:10.1007/s00253-006-0553-9.

    Article  CAS  Google Scholar 

  24. Ashiuchi, M., & Misono, H. (2002). In S. R. Fahnestock & A. Steinbuchel (Eds.), Biopolymers, vol. 7: Poly-γ-glutamic acid (pp. 123–174). Weinheim, Germany: Wiley-VCH.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University of China (no. NCET-07-0341) and the National High-Tech Research and Development Program of China (no. 2008AA10Z317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Ji, Z. & Chen, S. Isolation of Halotolerant Bacillus licheniformis WX-02 and Regulatory Effects of Sodium Chloride on Yield and Molecular Sizes of Poly-γ-Glutamic Acid. Appl Biochem Biotechnol 160, 1332–1340 (2010). https://doi.org/10.1007/s12010-009-8681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8681-1

Keywords

Navigation