Skip to main content
Log in

Characterization and Antineoplasic Effect of Extracts Obtained from Pleurotus sajor-caju Fruiting Bodies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fungi of the Pleurotus genus present a great industrial interest due to their possibility of producing pharmacological compounds, pigments, aromas, organic acids, polysaccharides, enzymes, vitamins, amino acids, etc. Among the therapeutic products, we can highlight those with antineoplasic activity, attributed to the fungi cell wall components. Based on this, the objective of this work was to study the antineoplasic capacity of the polysaccharidic fractions obtained from Pleurotus sajor-caju fruiting bodies. Female Swiss mice were inoculated with the Ehrlich ascitic tumor (5 × 106 cells/animal) in ascitic form. The polysaccharidic fractions were administered intraperitoneally, during a 6-day period. Fractions FI and FII presented a lower volume of ascitic liquid (3.1 and 1.8 mL, respectively) and a higher reduction in the number of neoplasic cells present in the ascitic liquid (86.2% and 85%, respectively), when compared to the positive control (group inoculated with the tumor but without treatment). These fractions were characterized in terms of monosaccharide composition. Glucose was the major component detected, followed by galactose and mannose. The anomeric carbon configuration of the β-glucan was confirmed by the 13C NMR (δ 103.7). Substituted and free C3 and C6 were also detected. Protein bands were confirmed through infrared analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbas, A. K., Lichtman, A. H., & Pober, J. S. (2000). In Cellular and molecular immunology, 4th ed, Chap 17: Immunity to tumors (pp. 384–403). Pennsylvania: Saunders.

  2. Estimativa (2008). Incidência de Câncer no Brasil 2008. Available from: www.inca.gov.br/estimativas/2008. Accessed Feb 2008.

  3. Doroshow, J. H. (2004). In R. E. Pollock, J. H. Doroshow, D. Khayat, A. Nakao & B. O’Sullivan (Eds.), UICC manual of clinical oncology, 8th ed, Chap 10: Principles of medical oncology (pp. 208–219). New Jersey: Wiley.

    Google Scholar 

  4. Okey, A. B., Harper, P. A., Grant, D. M., & Hill, R. P. (1998). In I. F. Tannock & R. P. Hill (Eds.), The basic science of oncology, 3rd ed, Chap 3: Chemical and radiation carcinogenesis (pp. 25–48). New York: Mc Graw Hill.

    Google Scholar 

  5. Lopes, L., Godoy, L. M. F., Oliveira, C. C., Gabardo, J., Schadeck, R. J. G., & Buchi, D. F. (2006). Micron (Oxford, England), 37, 277–287. doi:10.1016/j.micron.2005.08.005.

    CAS  Google Scholar 

  6. Piemonte, M. R., & Buchi, D. F. (2002). Journal of Submicroscopic Cytology and Pathology, 34(3), 255–263.

    Google Scholar 

  7. Lull, C., Wichers, H. J., & Savelkoul, H. F. (2005). Mediators of Inflammation, 2, 63–80. doi:10.1155/MI.2005.63.

    Article  Google Scholar 

  8. Zhang, J., Wang, G., Li, H., Zhuang, C., Mizuno, T., Ito, H., et al. (1994). Bioscience, Biotechnology, and Biochemistry, 58(7), 1195–1201.

    Article  CAS  Google Scholar 

  9. Ooi, V. E. C., & Liu, F. (2000). Current Medicinal Chemistry, 7, 715–729.

    CAS  Google Scholar 

  10. Bobek, P., Galbavy, S., & Ozdin, L. (1998). Oncology Reports, 5(3), 727–730.

    CAS  Google Scholar 

  11. Zhuang, C., Mizuno, T., Shimada, A., Ito, H., Suzuki, C., Mayuzumi, Y., et al. (1993). Bioscience, Biotechnology, and Biochemistry, 57(6), 901–906.

    Article  CAS  Google Scholar 

  12. Furlan, S. A., Virmond, L. J., Miers, D. A., Bonatti, M., Gern, R. M. M., & Jonas, R. (1997). World Journal of Microbiology & Biotechnology, 13, 689–692. doi:10.1023/A:1018579123385.

    Article  Google Scholar 

  13. Bonatti, M., Karnopp, P., Soares, H. M., & Furlan, S. A. (2004). Food Chemistry, 88, 425–428. doi:10.1016/j.foodchem.2004.01.050.

    Article  CAS  Google Scholar 

  14. Pagno, T., Blind, L. Z., Biavatti, M. W., & Kreuger, M. R. O. (2006). Brazilian Journal of Medical and Biological Research, 39(11), 1483–1491.

    CAS  Google Scholar 

  15. Zhang, P., & Cheung, P. C. K. (2002). Bioscience, Biotechnology, and Biochemistry, 66(5), 1052–1056. doi:10.1271/bbb.66.1052.

    Article  CAS  Google Scholar 

  16. Matsuzaki, P., Akisue, G., Salgado Oloris, S. C., Gorniak, S. L., & Zaidan Dagli, M. L. (2003). Life Sciences, 74(5), 573–579. doi:10.1016/j.lfs.2003.05.010.

    Article  CAS  Google Scholar 

  17. Zhang, L., Zhang, M., Zhou, Q., Chen, J., & Zeng, F. (2000). Bioscience, Biotechnology, and Biochemistry, 64(10), 2172–2178. doi:10.1271/bbb.64.2172.

    Article  CAS  Google Scholar 

  18. Rorabacher, D. B. (1991). Analytical Chemistry, 63(2), 139–146. doi:10.1021/ac00002a010.

    Article  CAS  Google Scholar 

  19. Vinogradov, E., & Wasser, S. P. (2005). Carbohydrate Research, 340, 2821–2825. doi:10.1016/j.carres.2005.09.024.

    Article  CAS  Google Scholar 

  20. Bano, Z., Rajarathnam, S., & Shashirekha, M. N. (1998). Critical Reviews in Biotechnology, 18(2 and 3), 91–236.

    Google Scholar 

  21. Zhang, M., Cui, S. W., Cheung, P. C. K., & Wang, Q. (2007). Trends in Food Science & Technology, 18, 4–19. doi:10.1016/j.tifs.2006.07.013.

    Article  Google Scholar 

  22. Gonzaga, M. L. C., Ricardo, N. M. P. S., Heatly, F., & Soares, S. A. (2005). Carbohydrate Polymers, 60(1), 43–49. doi:10.1016/j.carbpol.2004.11.022.

    Article  CAS  Google Scholar 

  23. Gutiérrez, A., Prieto, A., & Martínez, A. T. (1996). Carbohydrate Research, 281(1), 143–154. doi:10.1016/0008-6215(95)00342-8.

    Article  Google Scholar 

  24. Sassaki, G. L., Gorin, P. A. J., & Iacomini, M. (2001). FEMS Microbiology Letters, 194, 155–158. doi:10.1111/j.1574-6968.2001.tb09461.x.

    Article  CAS  Google Scholar 

  25. Gorin, P. A. J. (1981). Advances in Carbohydrate Chemistry and Biochemistry, 38, 13–104. doi:10.1016/S0065-2318(08)60309-1.

    Article  CAS  Google Scholar 

  26. Silverstein, R. M., Webster, F. X., & Kiemle, D. (2005). Spectrometric identification of organic compounds (7th ed.). New York: Wiley.

    Google Scholar 

  27. Sarangi, I., Ghosh, D., Bhutia, S. K., Mallick, S. K., & Maiti, T. K. (2006). International Immunopharmacology, 6(8), 1287–1297. doi:10.1016/j.intimp. 2006.04.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The team wishes to thank the Research and Support Fund—FAP from UNIVILLE for the financial backing for the project; the Basidiomycete Cultivation Center of the Botanical Institute of São Paulo for donating the fungus strain; and Dr. A. A. Steil and Dr. D. Sato, from the University of Itajaí—UNIVALI for the donation of the tumor strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Aparecida Furlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalonso, N., Souza, R., Silveira, M.L.L. et al. Characterization and Antineoplasic Effect of Extracts Obtained from Pleurotus sajor-caju Fruiting Bodies. Appl Biochem Biotechnol 160, 2265–2274 (2010). https://doi.org/10.1007/s12010-009-8678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8678-9

Keywords

Navigation