Skip to main content
Log in

Screening of Variables Influencing the Clavulanic Acid Production by Streptomyces DAUFPE 3060 Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Clavulanic acid (CA) is a β-lactam antibiotic, which has a potent β-lactamase inhibiting activity. The influence of five variables, namely pH (6.0, 6.4, and 6.8), temperature (28°C, 30°C, and 32°C), agitation intensity (150, 200, and 250 rpm), glycerol concentration (5.0, 7.5, and 10 g/L) and soybean flour concentration (5.0, 12.5, and 20 g/L), on CA production by a new isolate of Streptomyces (DAUFPE 3060) was investigated in 250-mL Erlenmeyer flasks using a fractional factorial design. Temperature and soybean flour concentration were shown to be the two variables that exerted the most important effects on the production of CA at 95% confidence level. The highest CA concentration (494 mg/L) was obtained after 48 h at 150 rpm, 32°C, pH 6.0, 5.0 g/L glycerol, and 20 g/L soybean flour concentrations. Under these conditions, the yields of biomass and product on consumed substrate were 0.26 gX/gS and 64.3 mgP/gS, respectively. Fermentations performed in 3.0-L bench-scale fermenter allowed increasing the CA production by about 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sánchez, S., & Olison, B. (2005). Current Opinion in Microbiology, 8, 229–233. doi:10.1016/j.mib.2005.04.016.

    Article  Google Scholar 

  2. Elander, R. P. (2003). Applied Microbiology and Biotechnology, 61, 385–392.

    CAS  Google Scholar 

  3. Haginaka, J., Nakagawa, T., & Uno, T. (1981). Chemical & Pharmaceutical Bulletin, 29, 3334–3341.

    CAS  Google Scholar 

  4. Baggaley, K. H., Brown, A. G., & Schofield, C. J. (1997). Natural Product Reports, 14, 309–333. doi:10.1039/np9971400309.

    Article  CAS  Google Scholar 

  5. Watve, M. G., Shejval, V., Sonawane, C., Rahalkar, M., Matapurkar, M., Shouche, Y., et al. (2000). Current Science, 78, 1535–1542.

    Google Scholar 

  6. Watve, M. G., Tickoo, R., Jog, M. M., & Bhole, B. D. (2001). Archives of Microbiology, 176, 386–390. doi:10.1007/s002030100345.

    Article  CAS  Google Scholar 

  7. Gouveia, E. R., Baptista-Neto, A., Badino-Jr, A. C., & Hooka, C. O. (2001). Biotechnology Letters, 23, 157–161. doi:10.1023/A:1010356231673.

    Article  CAS  Google Scholar 

  8. Chen, K. C., Lin, Y. H., Tsai, C. M., Hsieh, C. H., & Houng, J. Y. (2002). Biotechnology Letters, 24, 455–458. doi:10.1023/A:1014553109425.

    Article  CAS  Google Scholar 

  9. Kirk, S., Avignone-Rossa, C. A., & Bushell, M. E. (2000). Biotechnology Letters, 22, 1803–1809. doi:10.1023/A:1005670603596.

    Article  CAS  Google Scholar 

  10. Ortiz, S. C. A., Hokka, C. O., & Badino-Jr, A. C. (2007). Enzyme and Microbial Technology, 40, 1071–1077. doi:10.1016/j.enzmictec.2006.08.009.

    Article  CAS  Google Scholar 

  11. Bruns, R. E., Scarminio, I. S., & Barros-Neto, B. (2006). Statistical design—Chemometrics. Amsterdam, Netherlands: Elsevier.

    Google Scholar 

  12. Saudagar, P. S., & Singhal, R. S. (2007). Applied Biochemistry and Biotechnology, 136, 345–359. doi:10.1007/s12010-007-9030-x.

    Article  CAS  Google Scholar 

  13. Bersanetti, P. A., Almeida, R. M. R. G., Barboza, M. M. L., Araújo, G. C., & Hokka, C. O. (2005). Biochemical Engineering Journal, 23, 31–36. doi:10.1016/j.bej.2004.10.007.

    Article  CAS  Google Scholar 

  14. Rosa, J. C., Neto, A. B., Hokka, C. O., & Badino, A. C. (2005). Bioprocess and Biosystems Engineering, 27, 99–104. doi:10.1007/s00449-004-0386-9.

    Article  CAS  Google Scholar 

  15. Sircar, A., Sridhar, P., & Das, P. K. (1998). Process Biochemistry, 33, 283–289. doi:10.1016/S0032-9592(97)00058-7.

    Article  CAS  Google Scholar 

  16. Lee, S. D., Park, S. W., Oh, K. K., Hong, S. I., & Kim, S. W. (2002). Letters in Applied Microbiology, 34, 370–375. doi:10.1046/j.1472-765X.2002.01102.x.

    Article  Google Scholar 

  17. Kim, I. C., Kim, C. H., Hong, S. I., & Kim, S. W. (2001). World Journal of Microbiology & Biotechnology, 17, 869–872. doi:10.1023/A:1013895617923.

    Article  CAS  Google Scholar 

  18. Wang, Y. H., Yang, B., Ren, J., Dong, M. L., Liang, D., & Xu, A. L. (2005). Process Biochemistry, 40, 1161–1166. doi:10.1016/j.procbio.2004.04.010.

    Article  CAS  Google Scholar 

  19. Lawrence, C. H. (1956). Canadian Journal of Botany, 34, 44–47. doi:10.1139/b56-005.

    Article  Google Scholar 

  20. Maranesi, G. L., Baptista-Neto, A., Hokka, C. O., & Badino-Jr, A. C. (2005). World Journal of Microbiology & Biotechnology, 21, 509–514. doi:10.1007/s11274-004-2393-z.

    Article  CAS  Google Scholar 

  21. Bird, A. E., Bellis, J. M., & Gasson, B. C. (1982). Analyst (London), 107, 1241–1245. doi:10.1039/an9820701241.

    Article  CAS  Google Scholar 

  22. Hae Bok, S., & Demain, A. L. (1977). Analytical Biochemistry, 81, 18–20. doi:10.1016/0003-2697(77)90593-0.

    Article  Google Scholar 

  23. Teodoro, J. C., Baptista-Neto, A., Cruz-Hernández, I. L., Hokka, C. O., & Badino-Jr, A. C. (2006). Applied Microbiology and Biotechnology, 72, 450–455. doi:10.1007/s00253-005-0273-6.

    Article  CAS  Google Scholar 

  24. Bushell, M. E., Kirk, S., Zhao, H. J., & Avignone-Rossa, C. A. (2006). Enzyme and Microbial Technology, 39, 149–157. doi:10.1016/j.enzmictec.2006.01.017.

    Article  CAS  Google Scholar 

  25. Lynch, H. C., & Yang, Y. (2004). Enzyme and Microbial Technology, 34, 48–54. doi:10.1016/j.enzmictec.2003.08.003.

    Article  CAS  Google Scholar 

  26. Roubos, J. A., Krabben, P., de Wtam, L., Babuska, R., & Heijen, J. J. (2002). Biotechnology Progress, 18, 451–457. doi:10.1021/bp020294n.

    Article  CAS  Google Scholar 

  27. Mayer, A. F., & Deckwer, W. D. (1996). Applied Microbiology and Biotechnology, 45, 41–46. doi:10.1007/s002530050646.

    Article  CAS  Google Scholar 

  28. Kenji, I., Viet Hung, T., Chan Lee, H., Liou, K., Shin, C. H., Yoon, Y. J., et al. (2006). Journal of Microbiology and Biotechnology, 16, 590–596.

    Google Scholar 

  29. Romero, J., Liras, P., & Martin, J. F. (1984). Applied Microbiology and Biotechnology, 20, 318–325. doi:10.1007/BF00270593.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the Brazilian Research Funding Institution FAPESP (process no. 05/60158-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Converti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viana, D.A., Carneiro-Cunha, M.N., Araújo, J.M. et al. Screening of Variables Influencing the Clavulanic Acid Production by Streptomyces DAUFPE 3060 Strain. Appl Biochem Biotechnol 160, 1797–1807 (2010). https://doi.org/10.1007/s12010-009-8671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8671-3

Keywords

Navigation