Skip to main content
Log in

Characterization of a Neutral and Thermostable Glucoamylase from the Thermophilic Mold Thermomucor indicae-seudaticae: Activity, Stability, and Structural Correlation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae was purified by anion exchange and gel filtration chromatographic techniques using a fast protein liquid chromatographic system. The structure and thermal stability of this unique ‘thermostable and neutral glucoamylase’ were analyzed by circular dichroism (CD). T. indicae-seudaticae glucoamylase (TGA) contained typical aromatic amino acid (tryptophan/tyrosine) fingerprints in its tertiary structure. Analysis of the far-UV CD spectrum at pH 7.0 and 25 °C revealed the presence of 45% α-helix, 43% β-sheet, and 12% remaining structures. The α-helix content was highest at pH 7.0, where glucoamylase is optimally active. This observation points towards the possible (α/α)6 barrel catalytic domain in TGA, as reported in microbial glucoamylases. Thermal denaturation curves of the pure protein at different pH values revealed maximum stability at pH 7.0, where no change in the secondary structure was observed upon heating in the temperature range between 20 °C and 60 °C. The observed midpoint of thermal denaturation (T m) of glucoamylase at pH 7.0 was 67.1 °C, which decreased on either sides of this pH. Thermostability of TGA enhanced in the presence of starch (0.1%) as no transition curve was obtained in the temperature range between 20 °C and 85 °C. The only product of TGA action on starch was glucose, and it did not exhibit transglycosylation activity even at 40% glucose that can also be considered as an advantage during starch saccharification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TGA:

Thermomucor indicae-seudaticae glucoamylase

T m :

midpoint of thermal denaturation

CD:

circular dichroism

\( f_{\alpha } \), \( f_{\beta } \), ft and fr:

fractions of α-helix, β-sheet, β-turn, and random coil, respectively

f D :

fraction of denatured protein

References

  1. Pazur, J. H., & Ando, T. (1960). The Journal of Biological Chemistry, 235, 297–302.

    CAS  Google Scholar 

  2. Polakovic, M., & Bryjak, J. (2004). Biochemical Engineering Journal, 18, 57–64. doi:10.1016/S1369-703X(03)00164-5.

    Article  CAS  Google Scholar 

  3. Crabb, W. D., & Shetty, J. K. (1999). Current Opinion in Microbiology, 2, 252–256. doi:10.1016/S1369-5274(99)80044-7.

    Article  CAS  Google Scholar 

  4. Crabb, W. D. (1997). Trends in Biotechnology, 15, 349–352. doi:10.1016/S0167-7799(97)01082-2.

    Article  CAS  Google Scholar 

  5. Ford, C. (1999). Current Opinion in Biotechnology, 10, 352–357. doi:10.1016/S0958-1669(99)80064-0.

    Article  Google Scholar 

  6. Reilly, P. J. (1999). Starch/Starke, 51, 269–274.

    Article  CAS  Google Scholar 

  7. Bakir, U., Coutinho, P. M., Sullivan, P. A., Ford, C., & Reilly, P. J. (1993). Protein Engineering, 6, 939–946. doi:10.1093/protein/6.8.939.

    Article  CAS  Google Scholar 

  8. Fang, T. Y., & Ford, C. (1998). Protein Engineering, 11, 383–388. doi:10.1093/protein/11.5.383.

    Article  CAS  Google Scholar 

  9. Aleshin, A. E., Golubev, A., Firsov, L. M., & Honzatko, R. B. (1992). The Journal of Biological Chemistry, 267, 19291–19298.

    CAS  Google Scholar 

  10. Aleshin, A. E., Firsov, L. M., & Honzatko, R. B. (1994). The Journal of Biological Chemistry, 269, 15631–15639.

    CAS  Google Scholar 

  11. Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., et al. (2000). Biochimica et Biophysica Acta, 1543, 275–293.

    CAS  Google Scholar 

  12. Jafari-Aghdam, J., Khajeh, K., Ranjbar, B., & Nemat-Gorgani, M. (2005). Biochimica et Biophysica Acta, 1750, 61–68.

    CAS  Google Scholar 

  13. Kim, M. S., Park, J. T., Kim, Y. W., Lee, H. S., Nyawira, R., Shin, H. S., et al. (2004). Applied and Environmental Microbiology, 70, 3933–3940. doi:10.1128/AEM.70.7.3933-3940.2004.

    Article  CAS  Google Scholar 

  14. James, J. A., Robert, N., & Lee, B. H. (1996). Biotechnology Letters, 18, 1407–1412. doi:10.1007/BF00129344.

    Article  CAS  Google Scholar 

  15. Kumar, S., & Satyanarayana, T. (2003). Biotechnology Progress, 19, 936–944. doi:10.1021/bp034012a.

    Article  CAS  Google Scholar 

  16. Satyanarayana, T., Noorwez, S. M., Kumar, S., Rao, J. L. U. M., Ezhilvannan, M., & Kaur, P. (2004). Biochemical Society Transactions, 32, 276–279. doi:10.1042/BST0320276.

    Article  CAS  Google Scholar 

  17. Subrahmanyam, A., Mehrotra, B. S., & Thirumalchar, M. J. (1977). Georgia Journal of Science, 35, 106.

    Google Scholar 

  18. Emerson, R. (1941). Lloydia, 4, 77–144.

    Google Scholar 

  19. Kumar, P., & Satyanarayana, T. (2007). Bioresource Technology, 98, 1252–1259. doi:10.1016/j.biortech.2006.05.019.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  22. Yang, J. T., Wu, C. S., & Martinez, H. M. (1986). Methods in Enzymology, 130, 208–271. doi:10.1016/0076-6879(86)30013-2.

    Article  CAS  Google Scholar 

  23. Ahmad, F., & Bigelow, C. C. (1990). Biopolymers, 29, 1593–1598. doi:10.1002/bip.360291209.

    Article  CAS  Google Scholar 

  24. Schmid, F.X. (1997). In T.E. Creighton (Ed.), Protein structure: A practical approach pp. 261-297. Oxford University Press.

  25. Christensen, T., Frandsen, T. P., Kaarsholm, N. C., Svensson, B., & Sigurskjold, B. W. (2002). Biochimica et Biophysica Acta, 1601, 163–171.

    CAS  Google Scholar 

  26. Svensson, B., & Sierks, M. R. (1992). Carbohydrate Research, 227, 29–44. doi:10.1016/0008-6215(92)85059-9.

    Article  CAS  Google Scholar 

  27. Clarke, A. J., & Svensson, B. (1984). Carlsberg Research Communications, 49, 559–566. doi:10.1007/BF02908684.

    Article  CAS  Google Scholar 

  28. Chou, W. I., Pai, T. W., Liu, S. H., Hsiung, B. K., & Chang, M. D. T. (2006). The Biochemical Journal, 396, 469–477. doi:10.1042/BJ20051982.

    Article  CAS  Google Scholar 

  29. Shenoy, B. C., Katwa, L. C., Appu Rao, A. G., & Raghavendra Rao, M. R. (1985). Journal of Biosciences, 7, 399–419. doi:10.1007/BF02716801.

    Article  CAS  Google Scholar 

  30. Wang, C., Eufemi, M., Turano, C., & Giartosio, A. (1996). Biochemistry, 35, 7299–7307. doi:10.1021/bi9517704.

    Article  CAS  Google Scholar 

  31. Pace, C. N., & McGrath, T. (1980). Biological Chemistry, 255, 3862–3865.

    CAS  Google Scholar 

  32. Declerck, N., Machius, M., Chambert, R., Wiegand, G., Huber, R., & Gaillardin, C. (1997). Protein Engineering, 10, 541–549. doi:10.1093/protein/10.5.541.

    Article  CAS  Google Scholar 

  33. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2008). Applied Biochemistry and Biotechnology, 150, 205–219. doi:10.1007/s12010-008-8171-x.

    Article  CAS  Google Scholar 

  34. Sorimachi, K., Jacks, A. J., Le Gal-Coeffet, M. F., Williamson, G., & Archer, D. B. (1996). Journal of Molecular Biology, 259, 970–987. doi:10.1006/jmbi.1996.0374.

    Article  CAS  Google Scholar 

  35. Southall, S. M., Simpson, P. J., Gilbert, H. J., Williamson, G., & Williamson, M. P. (1999). FEBS Letters, 447, 58–60. doi:10.1016/S0014-5793(99)00263-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PK is grateful to the Council of Scientific and Industrial Research, Government of India, for Junior/Senior Research Fellowship during the course of this investigation. This work was partially supported by the research grants from the Council of Scientific & Industrial Research and Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Islam, A., Ahmad, F. et al. Characterization of a Neutral and Thermostable Glucoamylase from the Thermophilic Mold Thermomucor indicae-seudaticae: Activity, Stability, and Structural Correlation. Appl Biochem Biotechnol 160, 879–890 (2010). https://doi.org/10.1007/s12010-009-8666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8666-0

Keywords

Navigation