Skip to main content
Log in

Bleach Enhancement of Mixed Wood Pulp by Xylanase–Laccase Concoction Derived Through Co-culture Strategy

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mixed enzyme preparation having both xylanase and laccase activity was evaluated for its bleach enhancing ability of mixed wood pulp. The enzyme was produced through co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus MTCC 1804 under solid-state fermentation. Bleaching of pulp with mixed enzyme had resulted into a notable decrease in kappa number and increased brightness as compared to xylanase alone. Analysis of bleaching conditions had denoted that 8 IU g−1 of mixed enzyme preparation (xylanase/laccase, 22:1) had led into maximal removal of lignin from pulp when bleaching was performed at 10% pulp consistency (55 °C, pH 9.0) for 3 h. An overall improvement of 21%, 8%, 3%, and 5% respectively in kappa number, brightness, yellowness, and viscosity of pulp was achieved under derived bleaching conditions. Process of enzymatic bleaching was further ascertained by analyzing the changes occurring in polysaccharide and lignin by HPLC and FTIR. The UV absorption spectrum of the compounds released during enzymatic treatment had denoted a characteristic peak at 280 nm, indicating the presence of lignin in released coloring matter. The changes in fiber morphology following enzymatic delignification were studied by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barreca, A. M., Fabbrini, M., Galli, C., Gentili, P., & Ljunggren, S. (2003). Laccase/mediated oxidation of a lignin model for improved delignification procedures. Journal of Molecular Catalysis B, Enzymatic, 26, 105–110. doi:10.1016/j.molcatb.2003.08.001.

    Article  CAS  Google Scholar 

  2. Uffen, R. L. (1997). Xylan degradation: a glimpse at Microbiol diversity. Journal of Industrial Microbiology & Biotechnology, 19, 1–6. doi:10.1038/sj.jim.2900417.

    Article  CAS  Google Scholar 

  3. Record, E., Asther, M., Sigoillot, C., Pages, S., Punt, P. J., Haon, M., et al. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching applications. Applied Microbiology and Biotechnology, 62, 349–355. doi:10.1007/s00253-003-1325-4.

    Article  CAS  Google Scholar 

  4. Bajpai, P., & Bajpai, P. K. (1992). Biobleaching of kraft pulp. Proc Biochem, 27, 319–325. doi:10.1016/0032-9592(92)87009-6.

    Article  CAS  Google Scholar 

  5. Ragauskus, A. J., Poll, K. N., & Cesternino, A. (1994). Effects of xylanase pretreatment procedures on non-chlorine bleaching. Enzyme and Microbial Technology, 16, 492–495. doi:10.1016/0141-0229(94)90019-1.

    Article  Google Scholar 

  6. Tolan, J. S., & Guenette, M. (1997). Using enzymes in pulp bleaching: mill applications. Advances in Biochemical Engineering/Biotechnology, 157, 290–309.

    Google Scholar 

  7. Paice, M. G., Gurnagul, N., Page, D. H., & Jurasek, L. (1992). Mechanism of hemicellulose directed prebleaching of kraft pulp. Enzyme & Microbial Technology, 14, 272–276. doi:10.1016/0141-0229(92)90150-M.

    Article  CAS  Google Scholar 

  8. Pham, P. L., Alric, I., & Delmas, M. (1995). Incorporation of xylanase in total chlorine free bleach sequences using ozone and hydrogen peroxide. Appita Journal, 48, 213–217.

    CAS  Google Scholar 

  9. Niku-Paavola, M. L., Ranua, M., Suurnakki, A., & Kantelinen, A. (1994). Effects of lignin modifying enzymes on pine kraft pulp. Bioresource Technology, 50, 73–77. doi:10.1016/0960-8524(94)90223-2.

    Article  CAS  Google Scholar 

  10. Garg, A. P., Roberts, J. C., & Mc Carthy, A. J. (1998). Bleach boosting effect of cellulase free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme prepartions on birchwood kraft pulp. Enzyme and Microbial Technology, 22, 594–598. doi:10.1016/S0141-0229(97)00250-0.

    Article  CAS  Google Scholar 

  11. Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Production and characterization of thermostable xylanase and pectinase from a Streptomyces sp. QG-11–3. Journal of Industrial Microbiology & Biotechnology, 16, 211–213.

    CAS  Google Scholar 

  12. Atik, C., Imamoglu, S., & Bermek, H. (2006). Impact of xylanase pre-treatment on peroxide bleaching stage of biokraft pulp. International Biodeterioration & Biodegradation, 58, 22–26. doi:10.1016/j.ibiod.2006.04.003.

    Article  CAS  Google Scholar 

  13. Sandrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., & Polizeli, M. L. T. M. (2005). Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochemistry, 40, 1823–1828. doi:10.1016/j.procbio.2004.06.061.

    Article  CAS  Google Scholar 

  14. Khandeparkar, R., & Bhosle, N. B. (2007). Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresource Technology, 98, 897–903. doi:10.1016/j.biortech.2006.02.037.

    Article  CAS  Google Scholar 

  15. Medeiros, R. G., Silva, F. G., Jr., Salles, B. C., Estelles, R. S., & Filho, E. X. F. (2002). The performance of fungal xylan-degrading enzyme preparations in elemental chlorine free bleaching for eucalyptus pulp. Journal of Industrial Microbiology & Biotechnology, 28, 204–206. doi:10.1038/sj.jim.7000227.

    Article  CAS  Google Scholar 

  16. Roncero, M. B., Torres, A. L., Colom, J. F., & Vidal, T. (2003). TCF bleaching of wheat straw pulp using ozone and xylanase. Part A: paper quality assessment. Bioresource Technology, 87, 305–314. doi:10.1016/S0960-8524(02)00224-9.

    Article  CAS  Google Scholar 

  17. Gronqvist, S., Buchert, J., Rantanen, K., Viikari, L., & Suurnakki, A. (2003). Activity of laccase on unbleached and bleached thermomechanical pulp. Enzyme & Microbial Technology, 32, 439–445. doi:10.1016/S0141-0229(02)00319-8.

    Article  CAS  Google Scholar 

  18. Lund, M., Eriksson, M., & Felby, C. (2003). Reactivity of fungal laccase towards lignin in softwood kraft pulp. Holzforschung, 57, 21–26. doi:10.1515/HF.2003.004.

    Article  CAS  Google Scholar 

  19. Camarero, S., Ibarra, D., Martinez, A. T., Romero, J., Gutlerrez, A., & Rio, J. C. D. (2007). Paper pulp delignification using laccase and natural mediators. Enzyme & Microbial Technology, 40, 1264–1271. doi:10.1016/j.enzmictec.2006.09.016.

    Article  CAS  Google Scholar 

  20. Ibarra, D., Romero, J., Martinez, M. J., Martinez, A. T., & Camarero, S. (2006). Exploring the enzymatic parameters for optimal delignification of eucalyptus pulp by laccase mediator. Enzyme & Microbial Technology, 39, 1319–1327. doi:10.1016/j.enzmictec.2006.03.019.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  22. de-Souza Cruz, P. B., Freer, J., Siika-aho, M., & Ferraz, A. (2004). Extraction and determination of enzyme produced by Cerriporiopsis subvermispora during biopulping of Pinus Taeda wood chips. Enzyme & Microbial Technology, 34, 228–234.

    Article  Google Scholar 

  23. Patel, A. N., Grabski, A. C., & Jeffries, T. W. (1993). Chromophore release from kraft pulp by purified Streptomyces roseiscleroticus xylanase. Applied Microbiology & Biotechnology, 39, 405–412. doi:10.1007/BF00192102.

    CAS  Google Scholar 

  24. Gupta, S., Bhushan, B., & Hoondal, G. S. (2000). Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. Journal of Applied Microbiology, 88, 325–334. doi:10.1046/j.1365-2672.2000.00974.x.

    Article  CAS  Google Scholar 

  25. TAPPI test methods. (1996). Technical association of the pulp and paper industry. Atlanta, GA: TAPPI press.

    Google Scholar 

  26. Geng, X., & Li, K. (2002). Degradation of nonphenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Applied Microbiology & Biotechnology, 60, 342–346. doi:10.1007/s00253-002-1124-3.

    Article  CAS  Google Scholar 

  27. Buta, J. G., Zardrazil, F., & Gallettti, G. C. (1989). FT-IR determination of lignin degradation in wheat straw by white rot fungus Stropharia rugosoannulata with different oxygen concentrations. Journal of Agricultural & Food Chemistry, 37, 1382–1384. doi:10.1021/jf00089a038.

    Article  CAS  Google Scholar 

  28. Niku-Paavola, M. L., Karhunen, E., Salola, P., & Raunio, V. (1988). Lignolytic enzymes of the white rot fungus Phlebia radiata. Journal of Biochemistry, 266, 36–43.

    Google Scholar 

  29. Goodell, B., Yamamoto, K., Jellison, J., Nakamura, M., Fujii, T., Takabe, K., et al. (1998). Laccase immunolabelling and microanalytical analysis of wood degraded by Lentinus edodes. Holzforschung, 52, 345–350.

    Article  CAS  Google Scholar 

  30. Torres, A. L., Roncero, M. B., Colom, J. F., Pastor, F. I. J., Blanco, A., & Vidal, T. (2000). Effect of a novel enzyme on fibre morphology during ECF bleaching of oxygen delignified eucalyptus kraft pulps. Bioresource Technology, 74, 135–140. doi:10.1016/S0960-8524(99)00178-9.

    Article  CAS  Google Scholar 

  31. Roncero, M. B., Torres, A. L., Colom, J. F., & Vidal, T. (2000). Using xylanase before oxygen delignification on TCF bleaching. Influence on fiber surfaces by SEM. Process Biochemistry, 36, 45–50. doi:10.1016/S0032-9592(00)00178-3.

    Article  CAS  Google Scholar 

  32. Roncero, M. B., Torres, A. L., Colom, J. F., & Vidal, T. (2005). The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresource Technology, 96, 21–30. doi:10.1016/j.biortech.2004.03.003.

    Article  CAS  Google Scholar 

  33. Sealey, J., & Ragaukas, A. J. (1998). Residual lignin studies of laccase-delignified kraft pulps. Enzyme & Microbial Technology, 23, 422–426. doi:10.1016/S0141-0229(98)00056-8.

    Article  CAS  Google Scholar 

  34. El Mansouri, N. E., & Salvado, J. (2007). Analytical methods for determining functional groups in various technical lignins. Industrial Crops & Products, 26, 116–124. doi:10.1016/j.indcrop. 2007.02.006.

    Article  CAS  Google Scholar 

  35. Faix, O. (1992). Methods in lignin chemistry, Fourier transform infrared spectroscopy (Lin, S. Y., & Dence, C. W., ed.) (pp. 83–109). Berlin, Heidelberg: Springer.

    Google Scholar 

Download references

Acknowledgements

Senior research fellowship awarded by Council of Scientific and Industrial Research, New Delhi, India to first author and national doctoral fellowship to second author by All India Council of Technical Education, New Delhi, India are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, P., Vivekanand, V., Pareek, N. et al. Bleach Enhancement of Mixed Wood Pulp by Xylanase–Laccase Concoction Derived Through Co-culture Strategy. Appl Biochem Biotechnol 160, 255–268 (2010). https://doi.org/10.1007/s12010-009-8654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8654-4

Keywords

Navigation