Skip to main content
Log in

Scale-up of Thermally Dried Kefir Production as Starter Culture for Hard-Type Cheese Making: An Economic Evaluation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper concerns the effect of thermal-drying methodology on the investment cost for dried kefir cells production in order to be used as starter culture in cheese manufacturing. Kefir cells were produced at pilot plant scale using a 250-L bioreactor and whey as the main substrate. Kefir cells were subsequently dried in a thermal dryer at 38 °C and used as a starter culture in industrial-scale production of hard-type cheeses. The use of thermally dried kefir as starter culture accelerated ripening of cheeses by increasing both lipolysis and fermentation rate as indicated by the ethanol, lactic acid, and glycerol formation. Additionally, it reduced coliforms and enterobacteria as ripening proceeded. This constituted the basis of developing an economic study in which industrial-scale production of thermally dried kefir starter culture is discussed. The industrial design involved a three-step process using three bioreactors of 100, 3,000, and 30,000 L for a plant capacity of 300 kg of thermally dried kefir culture per day. The cost of investment was estimated at 238,000 €, which is the 46% of the corresponding cost using freeze-drying methodology. Production cost was estimated at 4.9 €/kg of kefir biomass for a 300-kg/day plant capacity, which is the same as with the corresponding cost of freeze-dried cells. However, the estimated added value is up to 10.8 × 109 € within the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ross, R. P., Stanton, C., Hill, C., Fitzgerald, G. F., & Coffey, A. (2000). Trends in Food Science & Technology, 11, 96–104. doi:10.1016/S0924-2244(00)00057-1.

    Article  CAS  Google Scholar 

  2. Thomas, T. D., & Mills, O. E. (1981). Netherlands Milk and Dairy Journal, 35, 255–273.

    CAS  Google Scholar 

  3. McSweeney, P. L. H., & Sousa, M. J. (2000). Le Lait, 80, 293–324. doi:10.1051/lait:2000127.

    Article  CAS  Google Scholar 

  4. Lortal, S., & Chapot-Chartier, M. P. (2005). International Dairy Journal, 15, 857–871. doi:10.1016/j.idairyj.2004.08.024.

    Article  CAS  Google Scholar 

  5. Litopoulou-Tzanetaki, E., Tzanetakis, N., & Vafopoulou-Mastrojiannaki, A. (1993). Food Microbiology, 10, 31–41. doi:10.1006/fmic.1993.1004.

    Article  CAS  Google Scholar 

  6. Ryan, M. P., Rea, M. C., Hill, C., & Ross, R. P. (1996). Applied and Environmental Microbiology, 62, 612–619.

    CAS  Google Scholar 

  7. Michaelidou, A., Katsiari, M. C., Kondyli, E., Voutsinas, L. P., & Alichanidis, E. (2003). International Dairy Journal, 13, 179–189. doi:10.1016/S0958-6946(02)00148-6.

    Article  CAS  Google Scholar 

  8. Kieronczyk, A., Skeie, S., Langsrud, T., & Yvon, M. (2003). Applied and Environmental Microbiology, 69, 734–739. doi:10.1128/AEM.69.2.734-739.2003.

    Article  CAS  Google Scholar 

  9. Boylston, T. D., Vinderola, C. G., Ghoddusi, H. B., & Reinheimer, J. A. (2004). International Dairy Journal, 14, 375–387. doi:10.1016/j.idairyj.2003.08.008.

    Article  CAS  Google Scholar 

  10. Hannon, J. A., Kilcawley, K. N., Wilkinson, M. G., Delahunty, C. M., & Beresford, T. P. (2007). International Dairy Journal, 17, 316–327. doi:10.1016/j.idairyj.2006.03.001.

    Article  CAS  Google Scholar 

  11. Kourkoutas, Y., Kandylis, P., Panas, P., Dooley, J. S. G., Nigam, P., & Koutinas, A. A. (2006). Applied and Environmental Microbiology, 72, 6124–6135. doi:10.1128/AEM.03078-05.

    Article  CAS  Google Scholar 

  12. Dimitrellou, D., Kourkoutas, Y., Banat, I. M., Marchant, R., & Koutinas, A. A. (2007). Journal of Applied Microbiology, 103, 1170–1183. doi:10.1111/j.1365-2672.2007.03337.x.

    Article  CAS  Google Scholar 

  13. Katechaki, E., Panas, P., Kandilogiannakis, L., Rapti, K., & Koutinas, A. A. (2008). Journal of Agricultural and Food Chemistry, 56, 5316–5323. doi:10.1021/jf703585y.

    Article  CAS  Google Scholar 

  14. Kourkoutas, Y., Sipsas, V., Papavasiliou, G., & Koutinas, A. A. (2007). Journal of Dairy Science, 90, 2175–2180. doi:10.3168/jds.2006-557.

    Article  CAS  Google Scholar 

  15. Athanasiadis, I., Boskou, D., Kanellaki, M., & Koutinas, A. A. (1999). Journal of Agricultural and Food Chemistry, 47, 4474–4477. doi:10.1021/jf990196q.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was performed within the framework of the Regional Operational Programme (ROP) of Western Greece and was co-funded by the European Regional Development Fund and the Region of Western Greece with final beneficiary from the Greek General Secretariat for Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios A. Koutinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutinas, A.A., Bekatorou, A., Katechaki, E. et al. Scale-up of Thermally Dried Kefir Production as Starter Culture for Hard-Type Cheese Making: An Economic Evaluation. Appl Biochem Biotechnol 160, 1734–1743 (2010). https://doi.org/10.1007/s12010-009-8645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8645-5

Keywords

Navigation