Skip to main content
Log in

Increased Saccharification Yields from Aspen Biomass Upon Treatment with Enzymatically Generated Peracetic Acid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60–70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). Bioresource Technology, 64, 113–119.

    Article  CAS  Google Scholar 

  2. Chernoglazov, V. M., Ermolova, O. V., & Klyosov, A. A. (1988). Enzyme and Microbial Technology, 10, 503–507.

    Article  CAS  Google Scholar 

  3. Converse, A. O., Ooshima, H., & Burns, D. S. (1990). Applied Biochemistry and Biotechnology, 24–25, 67–73.

    Article  Google Scholar 

  4. Sewalt, V. J. H., Glasser, W. J., & Beauchemin, K. A. (1997). Journal of Agricultural and Food Chemistry, 45, 1823–1828.

    Article  CAS  Google Scholar 

  5. Pan, X., Xie, D., Gilkes, N., Gregg, D. J., & Saddler, J. N. (2005). Applied Biochemistry and Biotechnology, 121–124, 1069–1079.

    Article  Google Scholar 

  6. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  7. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  8. Shimada, M., Ohta, A., Kurosaka, H., Hattori, T., Higuchi, T., & Takahashi, M. (1989). Roles of secondary metabolism of wood rotting fungi in biodegradation of lignocellulosic materials. ACS Symposium Series 399 (Plant Cell Wall Polym.), pp. 412–425.

  9. Chung, N., Lee, I.-S., Song, H.-S., & Bang, W.-G. (2000). Journal of Microbiology and Biotechnology, 10, 737–752.

    CAS  Google Scholar 

  10. Hossain, S. M., Anantharaman, N., & Das, M. (2007). Journal of the Chemical Engineering Division of the Institution of Engineers (India), 87, 42–50.

    CAS  Google Scholar 

  11. Bergius, F. (1937). Industrial and Engineering Chemistry, 29, 247–253.

    Article  CAS  Google Scholar 

  12. Funazukuri, T., Hirota, T., Nagatake, T., & Goto, M. (2000). The effects of additives on hydrolysis of cellulose with water under pressure. Endo, I., Nagamune, T., Katoah, S., & Yonemoto, T. eds., Bioseparation Engineering, Elsevier, New York, 16, pp. 181–185.

  13. Nathan, S. N., Christin, M. L., & Michael, R. L. (2002). Biotechnology and Bioengineering, 79, 610–618.

    Article  Google Scholar 

  14. Poljak, A. (1948). Angewandte Chemie, 60, 45–46.

    Article  Google Scholar 

  15. Pan, G. X., Spencer, L., & Leary, G. J. (1999). Journal of Agricultural and Food Chemistry, 47, 3325–3331.

    Article  CAS  Google Scholar 

  16. Sakai, K., Kuroda, Ken-ichi, & Kishimoto, S. (1972). Tappi Journal, 55, 1702–1706.

    CAS  Google Scholar 

  17. Sarkanen, K. V., & Suzuki, J. (1965). Tappi Journal, 48, 459–464.

    CAS  Google Scholar 

  18. Farrand, J. C., & Johnson, D. C. (1971). Journal of Organic Chemistry, 36, 3606–3612.

    Article  Google Scholar 

  19. Nimz, H. H., & Schwind, H. (1979). Cellulose Chemistry and Technology, 13, 35–46.

    CAS  Google Scholar 

  20. Lawrence, W., McKelvey, R. D., & Johnson, D. C. (1980). Svensk Papperstidning, 83, 11–18.

    CAS  Google Scholar 

  21. Lai, Y.-Z., & Sarkanen, K. V. (1968). Tappi Journal, 51, 449–453.

    CAS  Google Scholar 

  22. Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S., & Viikari, L. (2004). Applied Biochemistry and Biotechnology, 117, 1–17.

    Article  CAS  Google Scholar 

  23. Gharpuray, M. M., Lee, Y.-H., & Fan, L. T. (1983). Biotechnology and Bioengineering, 25, 157–172.

    Article  CAS  Google Scholar 

  24. Kamstra, L. D., Ronning, D., Walker, H. G., Kohler, G. O., & Wayman, O. (1980). Journal of Animal Science, 50, 153–159.

    CAS  Google Scholar 

  25. Zhao, X., Wang, L., & Liu, D. (2007). Journal of Chemical Technology & Biotechnology, 82, 1115–1121.

    Article  CAS  Google Scholar 

  26. Zhao, X., Wang, L., & Liu, D. (2008). Journal of Chemical Technology & Biotechnology, 83, 950–956.

    Article  CAS  Google Scholar 

  27. Zhao, X., Zhang, L., & Liu, D. (2008). Bioresource Technology, 99, 3729–3736.

    Article  CAS  Google Scholar 

  28. Ando, S., Kakimoto, T., Itoh, K., Arai, I., Kiyoto, K., & Hanai, S. (1988). Biotechnology and Bioengineering, 31, 802–804.

    Article  CAS  Google Scholar 

  29. Zhaoxin, L., & Kumakura, M. (1995). Isotopes in Environmental and Health Studies, 31, 151–160.

    Article  Google Scholar 

  30. Teixeira, L. C., Linden, J. C., & Schroeder, H. A. (1999). Applied Biochemistry and Biotechnology, 77–79, 19–34.

    Article  Google Scholar 

  31. Teixeira, L. C., Linden, J. C., & Schroeder, H. A. (2000). Applied Biochemistry and Biotechnology, 84–86, 111–127.

    Article  Google Scholar 

  32. Based on a cost of US$18 per liter for 35 wt% peracetic acid (100-L drum, Spectrum Chemicals) and a theoretical maximum conversion of 346 liters of ethanol per dry metric ton of hardwood biomass (101 gallons per dry US ton) (DOE Biomass Program. 2006. Theoretical Ethanol Yield Calculator. http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html).

  33. Björkling, F., Frykman, H., Godtfredsen, S. E., & Kirk, O. (1992). Tetrahedron, 48, 4587–4592.

    Article  Google Scholar 

  34. Picard, M., Gross, J., Lubbert, E., Tölzer, S., Krauss, S., van Pée, K.-H., et al. (1997). Angewandte Chemie International Edition in English, 36, 1196–1199.

    Article  CAS  Google Scholar 

  35. Bernhardt, P., Hult, K., & Kazlauskas, R. J. (2005). Angewandte Chemie. International Edition, 44, 2742–2746.

    Article  CAS  Google Scholar 

  36. Zhao, X., Zhang, T., Zhou, Y., & Liu, D. (2007). Journal of Molecular Catalysis A: Chemical, 271, 246–252.

    Article  CAS  Google Scholar 

  37. Zhao, X., Cheng, K., Hao, J., & Liu, D. (2008). Journal of Molecular Catalysis A: Chemical, 284, 58–68.

    Article  CAS  Google Scholar 

  38. Jencks, W. P., & Gilchrist, M. (1964). Journal of the American Chemical Society, 86, 4651–4654.

    Article  CAS  Google Scholar 

  39. Ankudey, E. G., Olivo, H. F., & Peeples, T. L. (2006). Green Chemistry, 8, 923–926.

    Article  CAS  Google Scholar 

  40. Mathews, I., Soltis, M., Saldajeno, M., Ganshaw, G., Sala, R., Weyler, W., et al. (2007). Biochemistry, 46, 8969–8979.

    Article  CAS  Google Scholar 

  41. DiCosimo, R., Payne, M. S., Croud, V. B., Gavagan, J. E., Wagner, L. W., & Hann, E. C. (2007). Enzymatic Production of Peracids Using Perhydrolytic Enzymes. U. S. Patent Application No. 2007/0042924 A1, E. I. Du Pont DE Nemours and Company.

  42. Mansfield, S. D., & Weineisen, H. (2007). Journal of Wood Chemistry and Technology, 27, 135–151.

    Article  CAS  Google Scholar 

  43. Kong, F., Engler, C. R., & Soltes, E. J. (1992). Applied Biochemistry and Biotechnology, 34–35, 23–35.

    Article  Google Scholar 

  44. Greenspan, F. P., & MacKellar, D. G. (1948). Analytical Chemistry, 20, 1061–1063; see also http://www.fmcchemicals.com/LinkClick.aspx?fileticket=9fuL5vDTWwM%3d&tabid=1466 &mid = 2560.

    Google Scholar 

  45. Pinkernell, U., Effkemann, S., & Karst, U. (1997). Analytical Chemistry, 69, 3623–3627.

    Article  CAS  Google Scholar 

  46. Adney, B., & Baker, J. (1996). Measurement of Cellulase Activities. LAP-006 NREL Analytical Procedure, National Renewable Energy Laboratory, Golden, CO. From http://www.nrel.gov/biomass/pdfs/42628.pdf.

  47. Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities, vol. 160. In W. A. Wood & S. T. Kellog (Eds.), Methods in enzymology (pp. 87–112). New York: Academic Press Inc.

    Google Scholar 

  48. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2006). Determination of Total Solids in Biomass. NREL Laboratory Analytical Procedure, National Renewable Energy Laboratory, Golden, CO. From http://devafdc.nrel.gov/pdfs/9572.pdf.

  49. Brown, L., & Torget, R. (1995). Enzymatic saccharification of lignocellulosic biomass. NREL Laboratory Analytical Procedure LAP #009, National Renewable Energy Laboratory, Golden, CO. From http://www1.eere.energy.gov/biomass/analytical_procedures.html#LAP– 009.

  50. Zhang, B., von Keitz, M., & Valentas, K. (2008). Applied Biochemistry and Biotechnology, 147, 143–150.

    Article  CAS  Google Scholar 

  51. Although many other researchers pretreated with peracetic acid at 60°C (Ref. [52]), we found that peracetic acid degraded quickly to hydrogen peroxide at this temperature. After 5 h of pretreatment of aspen with 470 mM peracetic acid at room temperature, 86% of the peracetic acid remained, while at 60°C only 8% of remained. During this time 4% of the peracetic acid had decomposed to hydrogen peroxide at room temperature, but 33% had decomposed to hydrogen peroxide at 60°C.

  52. Sun, R. C., Tomkinson, J., Zhu, W., & Wang, S. Q. (2000). Journal of Agricultural and Food Chemistry, 48, 1253–1262.

    Article  CAS  Google Scholar 

  53. Grohmann, K., Mitchell, D. J., Himmel, M. E., Dale, B. E., & Schroeder, H. A. (1989). Applied Biochemistry and Biotechnology, 20–21, 45–61.

    Article  Google Scholar 

  54. Kong et al (Ref. [43]) used the 2,4-dinitrosalicyclic acid colorimetric method to measure reducing sugar levels, which includes oligomers with with newly exposed reducing ends in addition to free monomeric sugars. For discussion, see Ref. [55].

  55. Rivers, D. B., Gracheck, S. J., Woodford, L. C., & Emert, G. H. (1984). Biotechnology and Bioengineering, 26, 800–802.

    Article  CAS  Google Scholar 

  56. Chang, V. S., & Holtzapple, M. T. (2000). Applied Biochemistry and Biotechnology, 84–86, 5–37.

    Article  Google Scholar 

  57. Carboni-Oerlemans, C., de María, P. D., Tuin, B., Bargeman, G., van der Meer, A., & van Gemert, R. (2006). Journal of Biotechnology, 126, 140–151.

    Article  CAS  Google Scholar 

  58. Chen, F., & Dixon, R. A. (2007). Nature Biotechnology, 25, 759–761.

    Article  CAS  Google Scholar 

  59. Lu, Y., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Applied Biochemistry and Biotechnology, 98–100, 641–654.

    Article  Google Scholar 

  60. McGinnis, G. D., Wilson, W. W., & Mullen, C. E. (1983). Industrial and Engineering Chemistry Product Research and Development, 22, 352–357.

    Article  CAS  Google Scholar 

  61. Palonen, H., & Viikari, L. (2004). Biotechnology and Bioengineering, 86, 550–557.

    Article  CAS  Google Scholar 

  62. Pan, X. J., Gilkes, N., & Saddler, J. N. (2006). Holzforschung, 60, 398–401.

    Article  CAS  Google Scholar 

  63. Cherry, J. R., Lamsa, M. H., Schneider, P., Vind, J., Svendsen, A., Jones, A., et al. (1999). Nature Biotechnology, 17, 379–384.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Minnesota’s Institute on the Environment for financial support. We thank Bruce Dale (U. Michigan) for providing a template for the mass balance figures and Jacob Tewalt and Dahai Yu for preliminary experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romas J. Kazlauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, S., Jing, Q., Katona, A. et al. Increased Saccharification Yields from Aspen Biomass Upon Treatment with Enzymatically Generated Peracetic Acid. Appl Biochem Biotechnol 160, 1637–1652 (2010). https://doi.org/10.1007/s12010-009-8639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8639-3

Keywords

Navigation