Skip to main content
Log in

Transgenic Soybean Seed as Protein Expression System: Aqueous Extraction of Recombinant β-Glucuronidase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soybean is one of the plant species with potential to be used as seed-based bioreactor. As part of the downstream processing (DSP) of this technology, extraction is a key step, since it defines the composition of the solution from which the recombinant product will be purified. In the present work, the characteristics of soybean seeds used as a bioreactor were evaluated from a process engineering standpoint through analysis of the influence of pH and ionic strength on the extraction of recombinant β-glucuronidase (rGUS). Concentrations of recombinant protein and native soybean compounds were analyzed and compared with similar data from extraction studies using transgenic corn seeds as bioreactor. Efficient rGUS extraction was obtained at pH of around 5.5 with no addition of salt. Soybean seed extracts had lower levels of co-extracted native compounds, than corn seed extracts, and should be considered as a potential plant bioreactor in terms of DSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hood, E. E., Woodard, S. L., & Horn, M. E. (2002). Current Opinion in Biotechnology, 13, 630–635. doi:10.1016/S0958-1669(02)00351-8.

    Article  CAS  Google Scholar 

  2. Delaney, D.E. (2002). In Production of recombinant proteins from transgenic crops (E. E., Hood, J.A., Howard (Ed.), (pp. 139–158). Kluwer Academic Publishers, Dordrecht.

  3. Woodard, S. L., Mayor, J. M., Bailey, M. R., Baker, D. K., Love, R. T., Lane, J. R., et al. (2003). Biotechnology and Applied Biochemistry, 38, 123–130. doi:10.1042/BA20030026.

    Article  CAS  Google Scholar 

  4. Menkhaus, T. J., Bai, Y., Zhang, C., Nikolov, Z. L., & Glatz, C. E. (2004). Biotechnology Progress, 20, 1001–1014. doi:10.1021/bp040011m.

    Article  CAS  Google Scholar 

  5. Farinas, C. S., Leite, A., & Miranda, E. A. (2005). Biotechnology Progress, 21, 1466–1471. doi:10.1021/bp050103r.

    Article  CAS  Google Scholar 

  6. Zhong, Q., Gu, Z., & Glatz, C. E. (2006). Journal of Agricultural and Food Chemistry, 54, 8086–8092. doi:10.1021/jf061921h.

    Article  CAS  Google Scholar 

  7. Zeitlin, L., Olmsted, S. S., Moench, T. R., Co, M. S., Martinell, B. J., Paradkar, V. M., et al. (1998). Nature Biotechnology, 16, 1361–1364. doi:10.1038/4344.

    Article  CAS  Google Scholar 

  8. Philip, R., Darnowski, D. W., Maughan, P. J., & Vodkin, L. O. (2001). Plant Science, 161, 323–335. doi:10.1016/S0168-9452(01)00420-4.

    Article  CAS  Google Scholar 

  9. Russel, D. A., Spatola, L. A., Dian, T., Paradkar, V. M., Dufield, D. R., Carrol, J. A., et al. (2005). Biotechnology and Bioengineering, 89, 775–782. doi:10.1002/bit.20366.

    Article  Google Scholar 

  10. Robić, G., Farinas, C. S., Rech, E. L., Bueno, S. M. A., & Miranda, E. A. (2006). Biochemical Engineering Journal, 32, 7–12. doi:10.1016/j.bej.2006.08.010.

    Article  Google Scholar 

  11. Jefferson, R. A., Burgess, S. M., & Hirsh, D. (1986). Proceedings of the National Academy of Sciences of the United States of America, 83, 8447–8451. doi:10.1073/pnas.83.22.8447.

    Article  CAS  Google Scholar 

  12. Horn, M. E., Woodard, S. L., & Howard, J. A. (2004). Plant Cell Reports, 22, 711–720. doi:10.1007/s00299-004-0767-1.

    Article  CAS  Google Scholar 

  13. Kusnadi, A. R., Evangelista, R. L., Hood, E. E., Howard, J. A., & Nikolov, Z. L. (1998). Biotechnology and Bioengineering, 60, 44–52. doi:10.1002/(SICI)1097-0290(19981005)60:1<44::AID-BIT5>3.0.CO;2-0.

    Article  CAS  Google Scholar 

  14. Zhang, C., & Glatz, C. E. (1999). Biotechnology Progress, 15, 12–18. doi:10.1021/bp980110y.

    Article  CAS  Google Scholar 

  15. Zhang, C., Love, T. L., Jilka, J. M., & Glatz, C. E. (2001). Biotechnology Progress, 17, 161–167. doi:10.1021/bp000140c.

    Article  CAS  Google Scholar 

  16. Bai, Y., Nikolov, Z. L., & Glatz, C. E. (2002). Biotechnology Progress, 18, 1301–1305. doi:10.1021/bp020132r.

    Article  CAS  Google Scholar 

  17. Menkhaus, T. J., Pate, C., Krech, A., & Glatz, C. E. (2004). Biotechnology and Bioengineering, 86, 108–114. doi:10.1002/bit.20039.

    Article  CAS  Google Scholar 

  18. Aragão, F. J. L., Sarokin, L., Vianna, G. R., & Rech, E. L. (2000). Theoretical and Applied Genetics, 101, 1–106. doi:10.1007/s001220051441.

    Article  Google Scholar 

  19. Bradford, M. M. A. (1976). Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  21. Wolf, W. J., Peterson, R. E., & Schaer, M. L. (1992). Journal of Agricultural and Food Chemistry, 40, 1809–1816. doi:10.1021/jf00022a016.

    Article  CAS  Google Scholar 

  22. Price, M. L., & Butler, L. G. (1977). Journal of Agricultural and Food Chemistry, 25, 1268–1273. doi:10.1021/jf60214a034.

    Article  CAS  Google Scholar 

  23. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  24. Box, G. E. P. (1978). Statistics for experimenters. New York, NY: Wiley.

    Google Scholar 

  25. Smith, A. K., & Circle, S. J. (1938). Industrial & Engineering Chemistry, 30, 1414–1418. doi:10.1021/ie50348a014.

    Article  CAS  Google Scholar 

  26. Sosulski, F., Krygier, K., & Hogge, L. (1982). Journal of Agricultural and Food Chemistry, 30, 337–340. doi:10.1021/jf00110a030.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq (Brazil) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everson A. Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robić, G., Farinas, C.S., Rech, E.L. et al. Transgenic Soybean Seed as Protein Expression System: Aqueous Extraction of Recombinant β-Glucuronidase. Appl Biochem Biotechnol 160, 1157–1167 (2010). https://doi.org/10.1007/s12010-009-8637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8637-5

Keywords

Navigation